In shrimp aquaculture, manufactured diets that include various supplements and alternative fishmeal ingredients are increasingly being used and their effect on the gastrointestinal (GI) microbiota studied. However, dietary effects on different shrimp GI samples are not known. We investigated how a high (HFM) or low (LFM) fishmeal diet affects bacterial communities from different sample types collected from Penaeus monodon gastrointestinal tract. Bacterial communities of the stomach, intestine tissue and intestine digesta were assessed using 16s rRNA gene sequencing. The feed pellets were also assessed as a potential source of bacteria in the GI tract. Results showed substantial differences in bacterial communities between the two diets as well as between the different sample types. Within the shrimp GI samples, stomach and digesta communities were most impacted by diet, while the community observed in the intestine tissue was less affected. Proteobacteria, Firmicutes and Bacteroidetes were the main phyla observed in shrimp samples, with enrichment of Bacteroidetes and Firmicutes in the LFM fed shrimp. The feed pellets were dominated by Firmicutes and were largely dissimilar to the shrimp samples. Several key taxa were shared however between the feed pellets and shrimp GI samples, particularly in the LFM fed shrimp, indicating the pellets may be a significant source of bacteria observed in shrimp GI samples. In summary, both diet and sample type influenced the bacterial communities characterised from the shrimp GI tract. Thus, it is important to consider the sample type collected from the GI tract when investigating dietary impacts on gut bacterial communities in shrimp. KEY POINTS: • Shrimp gastrointestinal communities are influenced by diet and sample type. • The low fishmeal diet enriched bacteria that aid in polysaccharide metabolism. • Feed pellets can be a source of bacteria-detected gastrointestinal tract of shrimp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-020-11052-6 | DOI Listing |
BMC Plant Biol
January 2025
Beijing Life Science Academy, Beijing, 102200, China.
Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Berlin, Germany.
Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.
View Article and Find Full Text PDFCont Lens Anterior Eye
January 2025
Department of Physics of Condensed Matter, Optics Area, University of Seville, Reina Mercedes S/N, 41012 Seville, Spain.
Purpose: To characterize the ocular surface microbiota in regular contact lens wearers with dry eyes and assess the effectiveness of reducing bacterial load using a liposomal ozonated oil solution.
Methods: This prospective, longitudinal, controlled study randomized subjects into two groups. Group A (45 subjects) received hydroxypropylmethylcellulose (HPMC, Artific®), while Group B (41 subjects) received ozonated sunflower seed oil with soybean phospholipids (OSSO, Ozonest®).
J Hazard Mater
December 2024
College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.
Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America.
Urinary tract infections (UTIs) are among the most common bacterial infections of both dogs and humans, with most caused by uropathogenic Escherichia coli (UPEC). Recurrent UPEC infections are a major concern in the treatment and management of UTIs in both species. In humans, the ability of UPECs to form intracellular bacterial communities (IBCs) within urothelial cells has been implicated in recurrent UTIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!