Background: Adjusting to incarceration is traumatic. An under-utilized strategy understood to buffer and counteract the negative impacts of incarceration are nature interventions.
Objective: Outcomes of an interdisciplinary design studio course focused on developing masterplans for a women's prison in the Pacific Northwest (US) are presented. Course objectives included comprehension and application of therapeutic and culturally expressive design principles to increase the benefits of environmental design within a carceral setting; collaboration, developing a deeper, more representative understanding of how design processes can improve the lives of marginalized populations; and enhancing design skills, including at masterplan and schematic scale using an iterative process and reflection.
Methods: A landscape architect, occupational therapist, and architect teaching team, with support from architects and justice specialists facilitated an elective design studio course to redesign the Washington Corrections Center for Women campus.
Results: In a ten-week academic quarter, six student design teams created conceptual masterplans for therapeutic outdoor spaces at the Washington Corrections Center for Women. Students presented their plans to prison staff, current and ex-offenders, and architects and landscape architects in practice, and then received positive feedback.
Conclusion: Despite well-documented need for and value of nature interventions to improve health and wellbeing for everyone regardless of circumstance or situation, the project awaits administrative approval to move forward to installation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/WOR-203360 | DOI Listing |
Biomater Adv
January 2025
Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany.
Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
January 2025
1School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; email:
Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong.
View Article and Find Full Text PDFMol Pharm
January 2025
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Institute of Nursing Science, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Background: Health care systems and the nursing profession worldwide are being transformed by technology and digitalization. Nurses acquire digital competence through their own experience in daily practice, but also from education and training; nursing education providers thus play an important role. While nursing education providers have some level of digital competence, there is a need for ongoing training and support for them to develop more advanced skills and effectively integrate technology into their teaching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!