It is well established that TSH from the anterior pituitary is the principal stimulatory agent in the physiological regulation of the thyroid gland. Chronic elevations of plasma TSH induce hyperplasia and hypertrophy of thyroid follicular cells and enlargement of blood capillaries. At low plasma TSH levels the thyroid gland atrophies. We have examined the vascular conductance (C = blood flow/mean arterial pressure) of the thyroid gland and several other tissues over a wide range of endogenous plasma TSH concentrations and after treatment with bovine TSH (bTSH) in rats. Tissue blood flows were determined using 15 +/- 5-microns diameter 141Ce-labeled microspheres in a modification of the reference sample microsphere technique. The microspheres were injected directly into the left cardiac ventricle via a 23-gauge needle passed through the chest wall, while the reference blood sample was collected and systemic arterial blood pressure was monitored through femoral arterial catheters. After the animals were killed, tissues were cleaned and weighed, and the tissue radioactivity was determined. Blood samples for determination of plasma hormone levels were obtained from the jugular vein before the injection of microspheres. In the first series of experiments, the vascular C per mass of thyroid gland was significantly decreased 4 and 8 days after hypophysectomy. Treatment of hypophysectomized rats with bTSH (185 mU/100 g.day as a continuous iv infusion for 2 or 6 days) restored thyroid vascular C per mass of tissue to control levels. In the second series of experiments, we manipulated circulating plasma TSH levels in intact rats by 6 days of treatment with propylthiouracil (2.0 mg/day, ip), thyroid hormones (1.5 micrograms T4, 0.4 micrograms T3 or 3.0 micrograms T4, plus 0.8 micrograms T3/100 g.day, sc by continuous infusion), TRH (240 micrograms/day, iv, by continuous infusion), bTSH (800 mU/day, iv, by continuous infusion), or combinations of these treatments. The vascular C per mass of thyroid gland was significantly decreased at very low chronic plasma TSH levels and increased at very high chronic plasma TSH levels. Thyroid vascular C per mass was unchanged, however, over a broad intermediate range of plasma TSH concentrations encompassing normal values, despite alterations in the size and function of the thyroid gland. At these intermediate levels of TSH stimulation, the thyroid gland may respond by adding or subtracting functional units without changing the blood flow per unit. The amount of blood flow per functional unit may be altered only at very high or very low levels of TSH stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo-122-3-921DOI Listing

Publication Analysis

Top Keywords

thyroid gland
32
plasma tsh
28
tsh levels
16
vascular mass
16
continuous infusion
16
thyroid
12
micrograms micrograms
12
tsh
11
vascular conductance
8
gland
8

Similar Publications

Autoimmune polyglandular syndromes (APS) are characterized by associations of two or more autoimmune diseases (AID). APS type 3 is characterized by the presence of autoimmune thyroid disease associated with other AID, excluding adrenal gland involvement. Here we report a case of a 64-year-old male, with history of type 1 diabetes mellitus (T1DM), diagnosed at the age of 32, who was referred to a Diabetes consultation in 2014 due to poor metabolic control.

View Article and Find Full Text PDF

The molecular mechanisms underlying adrenal and thyroid neuroendocrine tumors, including their tumorigenesis, progression, and metastasis, involve unique pathways regulating cell cycle progression. To better understand these mechanisms and pathways, extensive in-depth research on cell cycle-related genes is necessary. This review aims to describe and interpret current single-cell RNA sequencing studies on neuroblastoma, medullary thyroid cancer, and pheochromocytoma tumors.

View Article and Find Full Text PDF

The role of autophagy in Graves disease: knowns and unknowns.

Front Cell Dev Biol

January 2025

Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia.

Graves disease (GD), an autoimmune disease affects the thyroid gland, results in hyperthyroidisms and goiter. The main cause of GD is not clearly defined; however, stimulating autoantibodies for thyroid stimulating hormone receptor (TSHR) known as thyroid-stimulating immunoglobulins (TSIs) are the primary proposed mechanism. The TSI activation of TSHRs of thyroid gland results in excessive release of thyroid hormones with the subsequent development of hyperthyroidism and goiter.

View Article and Find Full Text PDF

An exceptionally rare case of a giant parathyroid adenoma with carcinoma-like presentation.

Hormones (Athens)

January 2025

Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.

Giant parathyroid adenoma (GPA) is an extremely rare cause of primary hyperparathyroidism (PHPT) and may sometimes mimic parathyroid carcinoma (PC). Parathyroid carcinoma is also a very rare entity. Both preoperative and postoperative diagnosis of the two conditions remains a challenge.

View Article and Find Full Text PDF

Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!