Contamination of agricultural soil with organic contaminants is a global problem due to the risks associated with food security and ecological sustainability. Besides the use of agrochemicals, hundreds of emerging contaminants enter arable lands through polluted irrigation water. In this study, an analytical workflow based on QuEChERS extraction coupled with LC-MS/MS quantification was applied to measure 65 emerging contaminants (42 pesticides and 23 multiclass industrial chemicals) in soil and rice for the first time. The method was validated on paddy and yard soil and rice plants. A recovery efficiency ranging between 70 and 120% (RSD <20%) was achieved for more than 70% of the analytes. Then, the validated method was used to quantify target contaminants in 22 soil and 9 rice samples collected mainly from paddy fields close to the Ergene River (Turkey), which is a highly polluted river used for irrigation in the region. Pesticide residues were present in all soil samples up to 2.4 mg/kg. However, their concentrations were below their maximum residual limits in rice. Azoxystrobin, prochloraz, propiconazole, imidacloprid, and epoxiconazole were the most frequently detected pesticides. In addition, industrial pollutants such as benzyldimethyldodecylammonium and tris(2-butoxyethyl) phosphate were detected in paddy soil samples at concentrations between 0.1 and 691 μg/kg. Benzyldimethyldodecylammonium and 5-methyl-1 benzotriazole were also measured in rice at concentrations up to 0.26 and 2.13 μg/kg, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c06111DOI Listing

Publication Analysis

Top Keywords

soil rice
12
analytical workflow
8
emerging contaminants
8
validation analytical
4
workflow analysis
4
analysis pesticide
4
pesticide emerging
4
emerging organic
4
organic contaminant
4
contaminant residues
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!