Sequential capillarity-assisted particle assembly in a microfluidic channel.

Lab Chip

Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland.

Published: March 2021

Colloidal patterning enables the placement of a wide range of materials into prescribed spatial arrangements, as required in a variety of applications, including micro- and nano-electronics, sensing, and plasmonics. Directed colloidal assembly methods, which exploit external forces to place particles with high yield and great accuracy, are particularly powerful. However, currently available techniques require specialized equipment, which limits their applicability. Here, we present a microfluidic platform to produce versatile colloidal patterns within a microchannel, based on sequential capillarity-assisted particle assembly (sCAPA). This new microfluidic technology exploits the capillary forces resulting from the controlled motion of an evaporating droplet inside a microfluidic channel to deposit individual particles in an array of traps microfabricated onto a substrate. Sequential depositions allow the generation of a desired spatial layout of colloidal particles of single or multiple types, dictated solely by the geometry of the traps and the filling sequence. We show that the platform can be used to create a variety of patterns and that the microfluidic channel easily allows surface functionalization of trapped particles. By enabling colloidal patterning to be carried out in a controlled environment, exploiting equipment routinely used in microfluidics, we demonstrate an easy-to-build platform that can be implemented in microfluidics labs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0lc00962hDOI Listing

Publication Analysis

Top Keywords

microfluidic channel
12
sequential capillarity-assisted
8
capillarity-assisted particle
8
particle assembly
8
colloidal patterning
8
microfluidic
5
colloidal
5
assembly microfluidic
4
channel colloidal
4
patterning enables
4

Similar Publications

Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification.

Materials (Basel)

January 2025

Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.

A novel approach to protein quantification utilizing a microfluidic platform activated by a magnetic assembly of functionalized magnetic beads around soft magnetic capture centers is presented. Functionalized magnetic beads, known for their high surface area and facile manipulation under external magnetic fields, are injected inside microfluidic channels and immobilized magnetically on the surface of glass-coated soft magnetic microwires placed along the symmetry axis of these channels. A fluorescent (Cy5) immunomagnetic sandwich ELISA is then performed by sequentially flowing the sample and all necessary reagents in the microfluidic channels.

View Article and Find Full Text PDF

Interface Acoustic Waves in 128° YX-LiNbO/SU-8/Overcoat Structures.

Micromachines (Basel)

January 2025

Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.

The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.

View Article and Find Full Text PDF

A Microfluidic-Based Cell-Stretching Culture Device That Allows for Easy Preparation of Slides for Observation with High-Magnification Objective Lenses.

Micromachines (Basel)

January 2025

Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan.

Microfluidic-based cell-stretching devices are vital for studying the molecular pathways involved in cellular responses to mechanobiological processes. Accurate evaluation of these responses requires detailed observation of cells cultured in this cell-stretching device. This study aimed to develop a method for preparing microscope slides to enable high-magnification imaging of cells in these devices.

View Article and Find Full Text PDF

Inertial microfluidics, as an efficient method for the manipulation of micro-/nanoparticles, has garnered significant attention due to its advantages of high throughput, structural simplicity, no need for external fields, and sheathless operation. Common structures include straight channels, contraction-expansion array (CEA) channels, spiral channels, and serpentine channels. In this study, we developed a CEA channel embedded with hook-shaped microstructures to modify the characteristics of vortices.

View Article and Find Full Text PDF

This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!