The feasibility of the thallium monofluoride TlF+ molecular ion towards laser cooling is brought into focus through an electronic structure study. Ab initio calculations are carried out to investigate the four lowest-lying electronic states, X2Σ+, (1)2Π, (2)2Σ+ and (2)2Π, including the spin-orbit coupling effect by employing the Complete Active Space Self Consistent Field (CASSCF) method at the Multireference Configuration Interaction (MRCI) level of theory while invoking Davidson correction (+Q). Potential energy and permanent dipole moment curves are used to determine the corresponding spectroscopic constants and some other equilibrium parameters. Vibrational parameters of vibrational states and transition dipole moments between possible transitions are computed. The calculated parameters are then used to conduct a theoretical study focusing on the potential possibility of TlF+ ionic molecule to be laser cooled on the (2)2Π1/2(ν')-X2Σ+1/2(ν'') transition based on Di Rosa's criteria. With the results obtained being promising, a laser cooling optical cycling scheme is proposed to illustrate the number of pump lasers needed with the corresponding wavelengths that were found to lie within the ranges covered by a specific scientific laser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp05575a | DOI Listing |
Sci Rep
January 2025
Mechanical Engineering Department, University of South Florida, Tampa, FL, 33620, USA.
We report on discovering the homogeneous boiling within a liquid film residual resting in equilibrium over a melting ice block. This phenomenon was induced via longwave infrared radiation generated by a continuous wave [Formula: see text] laser. This investigation employed a high-speed camera and the Schlieren visualization technique.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom.
Carbon fiber reinforced polymers (CFRPs) are widely used in fields such as aviation and aerospace. However, subtle defects can significantly impact the material's service life, making defect detection a critical priority. In this paper, delamination defects in CFRP are detected using line laser infrared thermography, and a defect characterization algorithm that combines differential thermography with a frequency-domain filter is proposed.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
Department of Aircraft Manufacturing Engineering, School of Aerospace Engineering, Guizhou Institute of Technology, Guiyang, China.
The application of a pulsed magnetic field (PMF) during a metallurgy solidification process has proven to be an effective method in refining the grain size and improving the mechanical performance of the material. However, fewer works were reported in the realm of laser additive manufacturing (LAM) and the mechanism of grain refinement consequent to the PMF is still unclear. In this work, numerical models were developed to study the thermal-fluid characteristics in the Ti-alloy melt pool generated during the laser scanning process under the effect of a combined direct current (DC) electric field and PMF.
View Article and Find Full Text PDFACS Nano
December 2024
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.
View Article and Find Full Text PDFSci Adv
December 2024
Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China.
The development of a microwave electrometer with inherent uncertainty approaching its ultimate limit carries both fundamental and technological significance. However, because of the thermal motion of atoms, the state-of-art Rydberg electrometer falls considerably short of the standard quantum limit by about three orders of magnitude. Here, we use an optically thin medium with approximately 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!