Purpose: Tumor volume largely determines the success of local control of borderline resectable and locally advanced pancreatic cancer with current therapy. We hypothesized that a tumor-mass normalized dose of magnetic nanoparticle hyperthermia (MNPH) with alternating magnetic fields (AMFs) reduces the effect of tumor volume for treatment.

Methods: 18 female athymic nude mice bearing subcutaneous MiaPaCa02 human xenograft tumors were treated with MNPH following intratumor injections of 5.5 mg Fe/g tumor of an aqueous suspension of magnetic iron-oxide nanoparticles. Mice were randomly divided into control ( = 5) and treated groups having small (0.15 ± 0.03 cm,  = 4) or large (0.30 ± 0.06 cm,  = 5) tumors. We assessed the clinical feasibility of this approach and of pulsed AMF to minimize eddy current heating using a finite-element method to solve a bioheat equation for a human-scale multilayer model.

Results: Compared to the control group, both small and large MiaPaCa02 subcutaneous tumors showed statistically significant growth inhibition. Conversely, there was no significant difference in tumor growth between large and small tumors. Both computational and xenograft models demonstrated higher maximum tumor temperatures for large tumors compared to small tumors. Computational modeling demonstrates that pulsed AMF can minimize nonspecific eddy current heating.

Conclusions: MNPH provides an advantage to treat large tumors because the MION dose can be adjusted to increase power. Pulsed AMF, with adjusted treatment time, can enhance MNPH in challenging cases such as low MION dose in the target tissue and/or large patients by minimizing nonspecific eddy current heating without sacrificing thermal dose to the target. Nanoparticle heterogeneity in tumors remains a challenge for continued research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363047PMC
http://dx.doi.org/10.1080/02656736.2020.1798514DOI Listing

Publication Analysis

Top Keywords

pulsed amf
12
eddy current
12
magnetic nanoparticle
8
nanoparticle hyperthermia
8
locally advanced
8
borderline resectable
8
tumor volume
8
tumors
8
amf minimize
8
current heating
8

Similar Publications

Infectious bone defects pose significant clinical challenges due to persistent infection and impaired bone healing. Icam1 macrophages were identified as crucial and previously unrecognized regulators in the repair of bone defects, where impaired oxidative phosphorylation within this macrophage subset represents a significant barrier to effective bone regeneration. To address this challenge, dual-responsive iron-doped barium titanate (BFTO) nanoparticles were synthesized with magnetic and ultrasonic properties.

View Article and Find Full Text PDF

NO-N pulse supply caused by biodegradable plastics exacerbates Trifolium repens L. invasion.

Environ Pollut

February 2025

Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, China. Electronic address:

The exacerbation of plant invasion by microplastics attracted widespread attention. Pulse resource hypothesis is popular theory to elucidate plant invasion. Our previous work demonstrated biodegradable microplastics (BMPs) could increase the arbuscular mycorrhizal fungi (AMF) colonization rate.

View Article and Find Full Text PDF

A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery.

View Article and Find Full Text PDF

The quantum model of T-cell activation: Revisiting immune response theories.

Scand J Immunol

August 2024

AMF Automation Technologies LLC, Richmond, Virginia, USA.

Our understanding of the immune response is far from complete, missing out on more detailed explanations that could be provided by molecular insights. To bridge this gap, we introduce the quantum model of T-cell activation. This model suggests that the transfer of energy during protein phosphorylation within T cells is not a continuous flow but occurs in discrete bursts, or 'quanta', of phosphates.

View Article and Find Full Text PDF

Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.

Biomed Phys Eng Express

May 2024

Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University-Harrisburg, Middletown, PA 17057, United States of America.

Magnetic nanoparticle hyperthermia (MNPH) has emerged as a promising cancer treatment that complements conventional ionizing radiation and chemotherapy. MNPH involves injecting iron-oxide nanoparticles into the tumor and exposing it to an alternating magnetic field (AMF). Iron oxide nanoparticles produce heat when exposed to radiofrequency AMF due to hysteresis loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!