Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780475PMC
http://dx.doi.org/10.1093/ehjcr/ytaa164DOI Listing

Publication Analysis

Top Keywords

in-scaffold neovascularization
4
neovascularization bioresorbable
4
bioresorbable vascular
4
vascular scaffold
4
scaffold years
4
years implantation
4
in-scaffold
1
bioresorbable
1
vascular
1
scaffold
1

Similar Publications

Effect of curcumin-loaded polycaprolactone scaffold on Achilles tendon repair in rats.

Vet Res Forum

November 2024

Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.

View Article and Find Full Text PDF

Addressing the demand for bone substitutes, tissue engineering responds to the high prevalence of orthopedic surgeries worldwide and the limitations of conventional tissue reconstruction techniques. Materials, cells, and growth factors constitute the core elements in bone tissue engineering, influencing cellular behavior crucial for regenerative treatments. Scaffold design, including architectural features and porosity, significantly impacts cellular penetration, proliferation, differentiation, and vascularization.

View Article and Find Full Text PDF

Zinc and chitosan-enhanced β-tricalcium phosphate from calcined fetal bovine bone for mandible reconstruction.

Front Bioeng Biotechnol

September 2024

Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.

Background: Mandibular defects pose significant challenges in reconstructive surgery, and scaffold materials are increasingly recognized for their potential to address these challenges. Among various scaffold materials, Beta-tricalcium phosphate (β-TCP) is noted for its exceptional osteogenic properties. However, improvements in its biodegradation rate and mechanical strength are essential for optimal performance.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) injuries are characterized by the traumatic loss of skeletal muscle resulting in permanent damage to both tissue architecture and electrical excitability. To address this challenge, we previously developed a 3D aligned collagen-glycosaminoglycan (CG) scaffold platform that supported myotube alignment and maturation. In this work, we assessed the ability of CG scaffolds to facilitate functional muscle recovery in a rat tibialis anterior (TA) model of VML.

View Article and Find Full Text PDF

Bioactive polymer composite scaffolds fabricated from 3D printed negative molds enable bone formation and vascularization.

Acta Biomater

September 2024

Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, UK; Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address:

Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!