Hormone therapy that contains 17β-estradiol (E2) is used commonly for treatment of symptoms associated with menopause. E2 treatment has been shown to improve cognitive function following the decrease in ovarian hormones that is characteristic of menopause. However, once in circulation, the majority of E2 is bound to serum hormone binding globulin or albumin, becoming biologically inactive. Thus, therapeutic efficacy of E2 stands to benefit from increased bioavailability via sustained release of the hormone. Here, we focus on the encapsulation of E2 within polymeric nanoparticles composed of poly(lactic-co-glycolic) acid (PLGA). PLGA agent encapsulation offers several delivery advantages, including improved bioavailability and sustained biological activity of encapsulated agents. We hypothesized that delivery of E2 from PLGA nanoparticles would enhance the beneficial cognitive effects of E2 relative to free E2 or non-hormone loaded nanoparticle controls in a rat model of menopause. To test this hypothesis, spatial learning and memory were assessed in middle-aged ovariectomized rats receiving weekly subcutaneous treatment of either oil-control, free (oil-solubilized) E2, blank (non-hormone loaded) PLGA, or E2-loaded PLGA. Unexpectedly, learning and memory differed significantly between the two vehicle control groups. E2-loaded PLGA nanoparticles improved learning and memory relative to its control, while learning and memory were not different between free E2 and its vehicle control. These results suggest that delivery of E2 from PLGA nanoparticles offered cognitive benefit. However, when evaluating peripheral burden, E2-loaded PLGA was found to increase uterine stimulation compared to free E2, which is an undesired outcome, as estrogen exposure increases uterine cancer risk. In sum, a weekly E2 treatment regimen of E2 from PLGA nanoparticles increased cognitive efficacy and was accompanied with an adverse impact on the periphery, effects that may be due to the improved agent bioavailability and sustained biological activity offered by PLGA nanoparticle encapsulation. These findings underscore the risk of non-specific enhancement of E2 delivery and provide a basic framework for the study and development of E2's efficacy as a cognitive therapeutic with the aid of customizable polymeric nano-carriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793758 | PMC |
http://dx.doi.org/10.3389/fnbeh.2020.597690 | DOI Listing |
Biomed Pharmacother
January 2025
Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil. Electronic address:
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.
View Article and Find Full Text PDFPharm Dev Technol
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11491, Saudi Arabia.
: We developed delafloxacin (Dela)-loaded PLGA nanoparticles (PNPs) for potential ocular application a topical route to treat eye infections caused by Gram-positive and Gram-negative bacteria. : Dela-PNPs were formulated using the emulsification-solvent evaporation method and stabilized using poly(vinyl alcohol) (PVA). Size and morphology were characterized by using dynamic light scattering (DLS) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.
View Article and Find Full Text PDFJ Food Sci
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
Vitamin B, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B is crucial to overcoming these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!