Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of .

Saudi J Biol Sci

Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia.

Published: January 2021

() is a highly pathogenic bacteria involved in numerous diseases among which, are urinary tract infections (UTIs). The pyocyanin secreted as a virulence factor by this bacterium has many beneficial applications but its high cost remains an obstacle for its widespread use. In this study, a total of fifty urine isolates were identified as . All strains produced pyocyanin pigment with a range of 1.3-31 µg/ml. The highest producer clinical strain P21 and the standard strain PA14 were used in optimization of pyocyanin production. Among tested media, king's A fluid medium resulted in the highest yield of pyocyanin pigment followed by nutrient broth. Growth at 37 °C was superior in pyocyanin production than growth at 30 °C. Both shaking and longer incubation periods (3-4 days) improved pyocyanin production. The pyocyanin yield was indifferent upon growth of P21 at both pH 7 and pH 8. In conclusion, the optimum conditions for pyocyanin production are to use King's A fluid medium of pH 7 and incubate the inoculated medium at 37 °C with shaking at 200 rpm for a period of three to four days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783791PMC
http://dx.doi.org/10.1016/j.sjbs.2020.11.031DOI Listing

Publication Analysis

Top Keywords

pyocyanin production
20
pyocyanin
9
conditions pyocyanin
8
urine isolates
8
pyocyanin pigment
8
king's fluid
8
fluid medium
8
growth °c
8
°c shaking
8
production
5

Similar Publications

Arsenic-induced modulation of virulence and drug resistance in Pseudomonas aeruginosa.

J Hazard Mater

January 2025

Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China. Electronic address:

Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments.

View Article and Find Full Text PDF

is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.

View Article and Find Full Text PDF

Multidrug-resistant infections pose a critical challenge to healthcare systems, particularly in nosocomial settings. This drug-resistant bacterium forms biofilms and produces an array of virulent factors regulated by quorum sensing. In this study, metal-tolerant bacteria were isolated from a metal-contaminated site and screened for their ability to synthesize multifunctional nanocomposites (NCs).

View Article and Find Full Text PDF

Pseudomonas aeruginosa (PA) is a critical pathogen, and its antibiotic resistance is largely driven by the quorum-sensing regulator LasR. Herein, we report the design, synthesis, and characterization of Aqs1C, a mutated peptide derivative of Aqs1, optimized to inhibit LasR and its quorum-sensing pathway. By introducing a targeted mutation, Aqs1C exhibited enhanced stability and binding affinity for LasR protein compared to its predecessor, Aqs1B.

View Article and Find Full Text PDF

The Fem cell-surface signaling system is regulated by ExsA in and affects pathogenicity.

iScience

January 2025

Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada.

Bacterial interspecies interactions shape microbial communities and influence the progression of polymicrobial infections. FemI-FemR-FemA, a cell-surface signaling system, in , is involved in the uptake of iron-chelating mycobactin produced by spp. In this report, we present the data that indicates the -PA1909 operon is positively regulated by ExsA, a master regulator for the type three secretion system (T3SS), connecting the Fem system with T3SS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!