In this paper, we review the latest developments in miniaturization of NMR systems with an emphasis on low-field NMR. We briefly cover the topics of magnet and coil miniaturization, elaborating on the advantages and disadvantages of miniaturized coils for different applications. The main part of the article is dedicated to progress in NMR electronics. Here, we touch upon software-defined radios as an emerging gadget for NMR before we provide a detailed discussion of NMR-on-a-chip transceivers as the ultimate solution in terms of miniaturization of NMR electronics. In addition to discussing the miniaturization capabilities of the NMR-on-a-chip approach, we also investigate the potential use of NMR-on-a-chip devices for an improved NMR system performance. Here, we also discuss the possibility of combining the NMR-on-a-chip approach with EPR-on-a-chip spectrometers to form compact DNP-on-a-chip systems that can provide a significant sensitivity boost, especially for low-field NMR systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2020.106860 | DOI Listing |
Theranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation.
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, Zhejiang, China.
Further miniaturization of magnetic nanomaterials is intrinsically accompanied by a reduction in spin ordered domains, resulting in size-dependent magnetic behaviors. Consequently, a longstanding roadblock in the advancement of nanodevices based on magnetic nanomaterials is the absence of a method to beat the size-dependent limit in nanomagnetism. Here, we discover and exploit a spin-lattice coupling effect in three-dimensional freestanding magnetic nanoparticles to beat the size-dependent limit for the first time.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India.
Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
Vascular dysfunction, characterized by changes in anatomy, hemodynamics, and molecular expressions of vasculatures, is closely linked to the onset and development of diseases, emphasizing the importance of its detection. In clinical practice, medical imaging has been utilized as a significant tool in the assessment of vascular dysfunction, however, traditional imaging techniques still lack sufficient resolution for visualizing the complex microvascular systems. Over the past decade, with the rapid advancement of nanotechnology and the emergence of corresponding detection facilities, engineered nanomaterials offer new alternatives to traditional contrast agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!