Rapid on-site evaluation(ROSE),an auxiliary sampling quality evaluation technology,can be used to evaluate the adequacy and diagnostic category of samples,judge the histological type of lung cancer,and optimize the gene type of lung cancer.Applying ROSE to endobronchial ultrasound-guided transbronchial needle aspiration of suspected lung cancer can improve the puncture success rate and diagnostic rate and reduce complications and puncture attempts.Rose performed via remote cytopathology technology or by trained respiratory specialists may become the future trends.

Download full-text PDF

Source
http://dx.doi.org/10.3881/j.issn.1000-503X.12183DOI Listing

Publication Analysis

Top Keywords

rapid on-site
8
endobronchial ultrasound-guided
8
ultrasound-guided transbronchial
8
transbronchial needle
8
needle aspiration
8
type lung
8
[research advances
4
advances diagnostic
4
diagnostic rapid
4
on-site evaluation
4

Similar Publications

To investigate the combined application of cytology, cell block histology and immunohistochemistry to improve the diagnostic accuracy of solid pancreatic lesions in endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) samples. The pathological data of EUS-FNA in 311 cases of solid pancreatic lesions submitted to the Second Hospital of Hebei Medical University, Shijiazhuang, China from May 2019 to September 2023 were retrospectively analyzed. The cases included pancreatic ductal adenocarcinoma (PDAC, 172 cases), solid pseudopapillary neoplasm (SPN, 12 cases), neuroendocrine tumors (PNET, 14 cases) and chronic pancreatitis (113 cases).

View Article and Find Full Text PDF

Background: The use of eHealth innovations is becoming increasingly important in improving health outcomes, especially for maternal and newborn health. However, planning and executing these innovations can be challenging due to their complex nature. To provide guidance and clarity on implementation approaches, researchers need to use implementation research (IR) tools.

View Article and Find Full Text PDF

Rapid detection of by recombinase-aided amplification combined with the CRISPR/Cas12a system.

Front Cell Infect Microbiol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

() is one of the primary agents involved in porcine respiratory disease complex, and circulates in the swine industry worldwide. The prevention and control of is complicated. Thus, a recombinase-aided amplification (RAA) assay coupled with the clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas12a system was established for the detection of .

View Article and Find Full Text PDF

Mercury is one of the most hazardous heavy metals and is capable of biomagnification, thereby posing severe risks to ecosystems and human health. Therefore, selective, sensitive, and rapid detection of Hg in a wide range of samples is essential. Herein, we report the synthesis of a new 2-(benzo[d]thiazol-2-yl) phenol-based fluorescent probe (PyS) and its potential as a fluorescent probe for detecting Hg ions in various real samples such as rice, garlic, shrimp, and root samples.

View Article and Find Full Text PDF

SERS-based simplified analysis of paraquat in poisoning cases: Bypassing complicated pretreatment with antioxidant sensor.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!