Osteoarthritis - From New Insights into Disease Pathogenesis to Contemporary Personalized Therapeutic Strategy.

Curr Rheumatol Rev

Department of Propaedeutics of Internal Diseases, Faculty of Medicine, Medical University - Plovdiv, Plovdiv, Bulgaria.

Published: December 2021

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573397116666210108095700DOI Listing

Publication Analysis

Top Keywords

osteoarthritis insights
4
insights disease
4
disease pathogenesis
4
pathogenesis contemporary
4
contemporary personalized
4
personalized therapeutic
4
therapeutic strategy
4
osteoarthritis
1
disease
1
pathogenesis
1

Similar Publications

Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.

View Article and Find Full Text PDF

On the mechanics of networked type II collagen: Experiments, constitutive modeling, and validation.

Acta Biomater

January 2025

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States; School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT, United States. Electronic address:

In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress-stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril.

View Article and Find Full Text PDF

Response eQTLs, chromatin accessibility, and 3D chromatin structure in chondrocytes provide mechanistic insight into osteoarthritis risk.

Cell Genom

January 2025

Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:

Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWASs) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. To address this gap, we mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions.

View Article and Find Full Text PDF

Background: Hip osteoarthritis has been identified as a potential risk factor for stroke, with previous studies have demonstrated an association between hip osteoarthritis and stroke. This study aims to further elucidate the causal relationship between the two, employing Two-Sample and Multivariable Mendelian randomization methods.

Methods: SNPs, derived from two extensive GWAS, served as instruments in exploring the association between genetically predicted hip osteoarthritis and stroke risk, utilizing two-sample Mendelian randomization.

View Article and Find Full Text PDF

A generalized objective CT-based method for quantifying articular fracture severity.

J Biomech

November 2024

Department of Orthopedics and Rehabilitation, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States; Department of Industrial and Systems Engineering, The University of Iowa, United States.

A CT-based method for objectively assessing fracture severity was previously developed and validated to address poor reliability in existing subjective fracture classification systems. The method involved quantifying the energy involved in creating a fracture. However, clinical utility of the method was hindered by reliance upon an intact contralateral CT and lengthy analysis time (8-10 h).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!