The distribution of ions in the proximity of the liquid-vapor interface of their aqueous solution has been the subject of an intense debate during the last decade. The effects of ionic polarizability have been one of its salient aspects. Much less has been said about the corresponding dynamical properties, which are substantially unexplored. Here, we investigate the single-particle dynamics at the liquid-vapor interface of several alkali halide solutions, using molecular dynamics simulations with polarizable and nonpolarizable force fields and intrinsic surface analysis. We analyze the diffusion coefficient, residence time, and velocity autocorrelation function of water and ions and investigate how these properties depend on the molecular layer where they reside. While anions are found in the first molecular layer for relatively long times, cations are only making quick excursions into it, thanks to thermal fluctuations. The in-layer residence time of ions and their molar fraction in the layer turned out to be linearly dependent on each other. We interpret this unexpected result using a simple two-state model. In addition, we found that, unlike water and other neat molecular liquids that show a different diffusion mechanism at the surface than in the bulk of their liquid phase, ions do not enjoy enhanced mobility in the surface layer of their aqueous solution. This result indicates that ions in the surface layer are shielded by their nearest water neighbors from being exposed to the vapor phase as much as possible. Such positions are available for the ions at the negatively curved troughs of the molecularly rugged liquid surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c09989 | DOI Listing |
J Phys Chem B
December 2024
Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 12, H-3300 Eger, Hungary.
In this work, we carry out a systematic computer simulation investigation of the single particle dynamics at the free surface of imidazolium-based room temperature ionic liquids by applying intrinsic surface analysis. Besides assessing the effect of the potential model and temperature, we focus in particular on the effect of changing the anion type, and, hence, their shape and size. Further, we also address the role of the length of the cation alkyl chains, known to protrude into the vapor phase, on the surface dynamics of the ions.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
Electrochemical liquid-cell transmission electron microscopy (e-LCTEM) offers great potential for investigating the structural dynamics of nanomaterials during electrochemical reactions. However, challenges arise from the difficulty in achieving the optimal electrolyte thickness, leading to inconsistent electrochemical responses and limited spatial resolution. In this study, we present advanced e-LCTEM techniques tailored for tracking Pt/C degradation under electrochemical polarization at short intervals with high spatial resolution.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands.
Biomolecular sensors with single-molecule resolution are composed of multitudes of transducers that measure state changes related to single-molecular binding and unbinding events. Conventionally, signals are aggregated from many individual transducers in order to achieve sufficient statistics. However, by aggregating signals, transducer-to-transducer differences are lost and heterogeneities cannot be studied.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III S/N, 45071, Toledo, Spain.
Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for metallic nanoparticle (NP) characterisation in terms of concentration and, taking into account several assumptions, also size. However, this technique faces challenges, such as the intrinsic matrix effect, which significantly impact the results when analysing real complex samples. This issue is critical for the calculations of key SP-ICP-MS parameters ultimately altering the final outcomes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.
Randomly moving active particles can be herded into directed motion by asymmetric geometric structures. Although such a rectification process has been extensively studied due to its fundamental, biological, and technological relevance, a comprehensive understanding of active matter rectification based on single particle dynamics remains elusive. Here, by combining experiments, simulations, and theory, we study the directed transport and energetics of swimming bacteria navigating through funnel-shaped obstacles-a paradigmatic model of rectification of living active matter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!