The structure of the 5,6-dichloro-2,1,3-benzoselenadiazole homodimer, obtained by adding the ligand, 4,5-dichloro--phenylenediamine, to the methanolic solution of SeCl, was determined by X-ray crystallography, augmented by Fourier transform infrared, Raman, and NMR spectroscopy. The binding motif involves a pair of Se···N chalcogen bonds, with a supplementary N···N pnicogen bond. Quantum calculations provide assessments of the strengths of the individual interactions as well as their contributing factors. All together, these three bonds compose a total interaction energy between 5.4 and 16.8 kcal/mol, with the larger chalcogen atom associated with the strongest interactions. Replacement of the Se atoms by S and Te analogues allows analysis of the dependence of these forces on the nature of the chalcogen atom. Calculations also measure the importance to the binding of the presence of a second N atom on each diazole unit as well as the substituted phenyl ring to which it is fused.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c10814DOI Listing

Publication Analysis

Top Keywords

chalcogen bonds
8
n···n pnicogen
8
pnicogen bond
8
chalcogen atom
8
experimental theoretical
4
theoretical studies
4
studies dimers
4
dimers stabilized
4
chalcogen
4
stabilized chalcogen
4

Similar Publications

A Hexavalent Tellurium-Based Chalcogen Bonding Catalysis Platform: High Catalytic Activity and Controlling of Selectivity.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.

Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.

View Article and Find Full Text PDF

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

The viability of the P═Se bond to serve as a monitor of the strength of a noncovalent bond was tested in the context of the (CH)PSe molecule. Density functional theory (DFT) computations paired this base with a collection of Lewis acids that spanned hydrogen, halogen, chalcogen, pnicogen, and tetrel bonding interactions and covered a wide range of bond strengths. A very strong linear correlation was observed between the interaction energy and the nuclear magnetic resonance (NMR) J(PSe) coupling constant, which could serve as an accurate indicator of bond strength.

View Article and Find Full Text PDF

Metal complex-based probes for the detection of chloride ions.

Dalton Trans

December 2024

Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India.

Chloride ions play vital roles in a variety of biological and environmental processes, making their accurate and efficient detection critical for both research and practical applications. In this perspective, we explore the recent advancements in the development of metal complex-based probes for chloride ion detection, with a focus on complexes involving transition and lanthanide metals. These probes offer remarkable selectivity and sensitivity, achieved through diverse mechanisms such as metal coordination, hydrogen bonding, electrostatic interactions, and halogen or chalcogen bonding.

View Article and Find Full Text PDF

Chalcogen Bonding Catalysis Enables Ring-Opening of Cyclopropene and Ring Expansion of Aryl Ketones.

Angew Chem Int Ed Engl

December 2024

School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, 250100, P. R. China.

Catalytic transformation of carbene species constitutes a fundamental part in organic synthesis, and the research in this direction has been dominated by transition metals while organic catalysts are difficult to mimic such transition-metal-like reactivity. It would significantly advance carbene chemistry if organic catalysts enable achieving classical metal-carbene approaches otherwise unrealizable reactions. Herein, we report that chalcogen bonding catalysis can solve reactivity problem to achieve an elusive Buchner ring expansion of aryl ketones appending a cyclopropene moiety as carbene precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!