Toxicogenomic Analysis.

Methods Mol Biol

FCFRP-USP, Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.

Published: March 2021

The biological functions of a cell may change in response to exposure to toxic agents. Toxicogenomics employs the recent developments in genomics, transcriptomics, and proteomics to study how a chemical impacts gene/protein expression and cell functions. We describe a method for transcriptomic analysis by RNA sequencing based on Illumina HiSeq, NextSeq, or NovaSeq Systems followed by real-time qPCR validation. We also depict a method for proteomic analysis by "one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis" (1D SDS-PAGE) and a sample preparation procedure for "liquid chromatography in tandem with mass spectrometry" (LC-MS/MS), and we present some generic points to consider during LC-MS/MS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1091-6_12DOI Listing

Publication Analysis

Top Keywords

toxicogenomic analysis
4
analysis biological
4
biological functions
4
functions cell
4
cell change
4
change response
4
response exposure
4
exposure toxic
4
toxic agents
4
agents toxicogenomics
4

Similar Publications

Purpose: In this study, we aimed to study the role of extracellular proteins as biomarkers associated with newly diagnosed Type 1 diabetes (NT1D) diagnosis and prognosis.

Patients And Methods: We retrieved and analyzed the GSE55098 microarray dataset from the Gene Expression Omnibus (GEO) database. Using R software, we screened out the extracellular protein-differentially expressed genes (EP-DEGs) through several protein-related databases.

View Article and Find Full Text PDF

Surgery remains the primary treatment for solid malignant tumors, but controlling postoperative tumor recurrence and metastasis continues to be a major challenge. Understanding the factors that influence tumor recurrence and metastasis after surgery, as well as the underlying biological mechanisms, is critical. Previous studies suggest that anesthetic agents may increase the risk of tumor recurrence and metastasis in patients with cancer, but the mechanisms underlying these findings remain unclear.

View Article and Find Full Text PDF

Strategies for robust, accurate, and generalizable benchmarking of drug discovery platforms.

bioRxiv

December 2024

Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Benchmarking is an important step in the improvement, assessment, and comparison of the performance of drug discovery platforms and technologies. We revised the existing benchmarking protocols in our Computational Analysis of Novel Drug Opportunities (CANDO) multiscale therapeutic discovery platform to improve utility and performance. We optimized multiple parameters used in drug candidate prediction and assessment with these updated benchmarking protocols.

View Article and Find Full Text PDF

Interest and limits of using pharmacogenetics in MDMA-related fatalities: A case report.

Forensic Sci Int Genet

December 2024

Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d'Angers, Angers, France.

Interpreting postmortem concentrations of 3,4-Methylenedioxymethamphetamine (MDMA) remains challenging due to the wide range of reported results and the potential idiosyncratic nature of MDMA toxicity. Consequently, forensic pathologists often rely on a body of evidence to establish conclusions regarding the cause and the manner of death in death involving MDMA. Given these issues, implementing pharmacogenetics' (PGx)' testing may be beneficial.

View Article and Find Full Text PDF

Effects of mixed exposure to PFAS on adolescent non-alcoholic fatty liver disease: Integrating evidence from human cohorts, toxicogenomics, and animal models to uncover mechanisms and potential target sites.

J Hazard Mater

December 2024

Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China. Electronic address:

Extensive evidence suggests a correlation between environmental pollutants, specifically perfluoroalkyl and polyfluoroalkyl substances (PFAS) and non-alcoholic fatty liver disease (NAFLD). This study aims to investigate the association and underlying mechanisms of PFAS-induced NAFLD in adolescents by employing a comprehensive approach of population-based studies, toxicogenomics, and animal models. A total of 2014 freshmen from Dali University were recruited for this study, with 1694 participants undergoing serum testing for PFAS exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!