Fish embryo toxicity (FET) test using zebrafish (Danio rerio) has been established as an alternative assay to animal experimentation. The FET assay enables the assessment of multiple morphological endpoints during the development of zebrafish early life stages, showing high impact to the field of ecotoxicology on risk assessment of chemicals and pollutants. Moreover, it is also applied to screening drug-induced toxicity and human diseases, due to the high genetic and physiological orthology between zebrafish and humans. Here, we describe FET test, with all steps and several adaptations involved in the methodological procedures. To demonstrate the efficiency of this method, results using the reference substance 3,4-dichloroaniline (DCA) were included to demonstrate sublethal and teratogenic malformations on zebrafish embryos. Thus, there is a strong tendency for using FET tests as a replacement strategy of traditional tests in toxicology and ecotoxicology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1091-6_7 | DOI Listing |
Pediatr Cardiol
January 2025
Pediatric Heart Center, Johann-Wolfgang-Goethe University Clinic, Theodor-Storm-Kai 7, 60596, Frankfurt, Germany.
This proposal presents a proof of concept for the use of pulmonary flow restrictors (PFRs) based on MVP™-devices, drawing from clinical experience, and explores their potential role in the management of newborns with hypoplastic left heart syndrome (HLHS), other complex left heart lesions, and infants with end-stage dilated cardiomyopathy (DCM). At this early stage of age, manually adjusted PFRs can be tailored to patient's size and hemodynamic needs. Although currently used off-label, PFRs have substantial potential to improve outcomes in these vulnerable patient populations.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Zentalis Pharmaceuticals, Inc., San Diego, CA, USA.
Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.
View Article and Find Full Text PDFSci Rep
January 2025
Chaum Life Center, CHA University School of Medicine, Seoul, 06062, Korea.
No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg.
Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!