Microbial community composition and metabolic functions in landfill leachate from different landfills of China.

Sci Total Environ

Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China. Electronic address:

Published: May 2021

Landfill leachate usually harbors complex microbial communities responsible for the decomposition of municipal solid waste. However, the diversity and metabolic functions of the microbial communities in landfill leachate as well as the factors that influence them are still not well understood. In this study, Illumina MiSeq high-throughput sequencing was used to investigate the microbial community composition and metabolic functions in landfill leachate from 11 cities in China. The microbial diversity and structure of different leachate samples exhibited obvious differences. In general, Bacteroidetes, Firmicutes and Proteobacteria were the three dominant microbial communities among the 26 bacterial phyla identified in landfill leachate, regardless of the geographical locations. Diverse bacterial genera associated with various functions such as cellulolytic bacteria (e.g., Sphaerochaeta and Defluviitoga), acidifying bacteria (e.g., Prevotella and Trichococcus) and sulfate-reducing bacteria (e.g., Desulfuromonas and Desulfobacterium) were detected abundantly in the landfill leachate. Moreover, the archaeal community in all leachate samples was dominated by the orders Methanomicrobiales and Methanosarcinales belonging to the Euryarchaeota phylum. Notably, the archaea-specific primer pair covered more diverse archaeal communities than the universal bacteria-archaea primer pair. Seventeen archaeal genera belonging to acetoclastic, hydrogenotrophic, and methylotrophic methanogens were identified, and the composition of the dominant genera in these samples varied greatly. The canonical correlation analysis indicated that landfill age, electrical conductivity, ammonia nitrogen, and total nitrogen were significantly correlated with the microbial community structure. Based on PICRUSt2, a total of 41 metabolic pathways belonging to six metabolic pathway groups were predicted, and the KEGG pathway Metabolism was the most abundant group across all leachate samples. This study provides an important insight into the composition and functional characteristics of the microbial communities in landfill leachate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144861DOI Listing

Publication Analysis

Top Keywords

landfill leachate
28
microbial communities
16
microbial community
12
metabolic functions
12
leachate samples
12
leachate
10
microbial
8
community composition
8
composition metabolic
8
landfill
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!