Thyroid hormone and thyromimetics inhibit myelin and axonal degeneration and oligodendrocyte loss in EAE.

J Neuroimmunol

Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, United States of America.

Published: March 2021

We have previously demonstrated that thyromimetics stimulate oligodendrocyte precursor cell differentiation and promote remyelination in murine demyelination models. We investigated whether a thyroid receptor-beta selective thyromimetic, sobetirome (Sob), and its CNS-targeted prodrug, Sob-AM2, could prevent myelin and axonal degeneration in experimental autoimmune encephalomyelitis (EAE). Compared to controls, EAE mice receiving triiodothyronine (T3, 0.4 mg/kg), Sob (5 mg/kg) or Sob-AM2 (5 mg/kg) had reduced clinical disease and, within the spinal cord, less tissue damage, more normally myelinated axons, fewer degenerating axons and more oligodendrocytes. T3 and Sob also protected cultured oligodendrocytes against cell death. Thyromimetics thus might protect against oligodendrocyte death, demyelination and axonal degeneration as well as stimulate remyelination in multiple sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748188PMC
http://dx.doi.org/10.1016/j.jneuroim.2020.577468DOI Listing

Publication Analysis

Top Keywords

axonal degeneration
12
myelin axonal
8
thyroid hormone
4
hormone thyromimetics
4
thyromimetics inhibit
4
inhibit myelin
4
degeneration oligodendrocyte
4
oligodendrocyte loss
4
loss eae
4
eae demonstrated
4

Similar Publications

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

Previous research has revealed patterns of brain atrophy in subjective cognitive decline, a potential preclinical stage of Alzheimer's disease. However, the involvement of myelin content and microstructural alterations in subjective cognitive decline has not previously been investigated. This study included three groups of participants recruited from the Compostela Aging Study project: 53 cognitively unimpaired adults, 16 individuals with subjective cognitive decline and hippocampal atrophy and 70 with subjective cognitive decline and no hippocampal atrophy.

View Article and Find Full Text PDF

Anatomical and functional changes after internal limiting membrane peeling.

Surv Ophthalmol

January 2025

Department of Ophthalmology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States. Electronic address:

Internal limiting membrane (ILM) peeling has been an acceptable step in vitrectomy surgeries for various retinal diseases such as macular hole, chronic macular edema following epiretinal membrane (ERM), and vitreoretinal traction. Despite all the benefits, this procedure has some side effects, which may lead to structural damage and functional vision loss. Light and dye toxicity may induce reversible and irreversible retina damage, which will be observed in postoperative optical coherence tomography scans.

View Article and Find Full Text PDF

Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation.

Vision Res

January 2025

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).

View Article and Find Full Text PDF

Plasmalogens Activate AKT/mTOR Signaling to Attenuate Reactive Oxygen Species Production in Spinal Cord Injury.

Curr Gene Ther

January 2025

Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.

Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!