Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Childhood obesity is characterized by the loss of vascular insulin sensitivity along with altered oxidant-antioxidant state and chronic inflammation, which play a key role in the onset of endothelial dysfunction. We previously demonstrated a reduced insulin-stimulated Nitric Oxide (NO) bioavailability in Human Umbilical Vein Endothelial cells (HUVECs) cultured with plasma from obese pre-pubertal children (OB) compared to those cultured with plasma of normal-weight children (CTRL). However, mechanisms underlying endothelial dysfunction in childhood obesity remains poorly understood. Hence, the present study aimed to better investigate these mechanisms, also considering a potential involvement of mammalian Target Of Rapamycin Complex1 (mTORC1)-ribosomal protein S6 Kinase beta1 (S6K1) pathway. OB-children (N = 32, age: 9.2 ± 1.7; BMI z-score: 2.72 ± 0.31) had higher fasting insulin levels and increased HOMA-IR than CTRL-children (N = 32, age: 8.8 ± 1.2; BMI z-score: 0.33 ± 0.75). In vitro, HUVECs exposed to OB-plasma exhibited significant increase in Reactive Oxygen Species (ROS) levels, higher vascular and intercellular adhesion molecules exposure, together with increased monocytes-endothelial interaction. This was associated with unbalanced pro- and anti-atherogenic endothelial insulin stimulated signaling pathways, as measured by increased Mitogen Activated Protein Kinase (MAPK) and decreased Insulin Receptor Substrate-1 (IRS-1)/protein kinase B (Akt)/ endothelial NO Synthase (eNOS) phosphorylation levels, together with augmented S6K1 activation. Interestingly, inhibition of mTORC1-S6K1 pathway using rapamycin significantly restored the IRS-1/Akt/eNOS activation, suggesting a feedback regulation of IRS-1/Akt signal through S6K1. Overall, our in vitro data shed light on new mechanisms underlying the onset of endothelial dysfunction in childhood obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2021.166076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!