Trajectory tracking of a quadrotor using a robust adaptive type-2 fuzzy neural controller optimized by cuckoo algorithm.

ISA Trans

School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry CV1 2JH, UK. Electronic address:

Published: August 2021

This paper proposes an adaptive and robust adaptive control strategy based on type-2 fuzzy neural network (T2FNN) for tracking the desired trajectories of a quadrotor. The designed methods can control both the position and the orientation of a quadrotor. Contrary to common sliding mode controllers (SMCs), the robust adaptive trajectory tracking scheme presented here is based on SMC with exponential reaching law; which helps reduce the phenomenon of chattering. Moreover, parameters including the gains of sliding surfaces, are optimized by cuckoo optimization algorithm (COA), and the results are compared with those obtained by genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO). The designed methods in this study are called adaptive T2FNN controller and the exponential SMC (ESMC)-T2FNN. The law for updating the T2FNN is obtained online by using the Lyapunov stability theory. Considering undesired factors such as uncertainties, external disturbances and control signal saturation, the results of our controllers are compared with those of the adaptive type-1 fuzzy neural network controller (T1FNN) and ESMC-T1FNN. The extensive simulations demonstrate the effectiveness of the proposed COA-based ESMC-AT2FNN approach compared to the other tested techniques (i.e. GA, PSO and ACO) in terms of the improved transient and steady-state trajectory-tracking performance. The mean and standard deviation values concerning the COA are obtained through statistical analyses at 0.00006173 and 0.000092, respectively. This paper also examines the complexity of COA in optimizing the trajectory tracking control of quadrotor and investigates the effects of COA parameters on optimization results. The stable performance of the cuckoo algorithm is demonstrated by varying its parameters and analyzing the obtained results. These results also show the convergence of COA for the considered problem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2020.12.047DOI Listing

Publication Analysis

Top Keywords

trajectory tracking
12
robust adaptive
12
fuzzy neural
12
type-2 fuzzy
8
optimized cuckoo
8
cuckoo algorithm
8
neural network
8
designed methods
8
adaptive
6
coa
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!