A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Predictive Model Based on Bi-parametric Magnetic Resonance Imaging and Clinical Parameters for Clinically Significant Prostate Cancer in the Korean Population. | LitMetric

Purpose: This study aimed to develop and validate a predictive model for the assessment of clinically significant prostate cancer (csPCa) in men, prior to prostate biopsies, based on bi-parametric magnetic resonance imaging (bpMRI) and clinical parameters.

Materials And Methods: We retrospectively analyzed 300 men with clinical suspicion of prostate cancer (prostate-specific antigen [PSA] ≥ 4.0 ng/mL and/or abnormal findings in a digital rectal examination), who underwent bpMRI-ultrasound fusion transperineal targeted and systematic biopsies in the same session, at a Korean university hospital. Predictive models, based on Prostate Imaging Reporting and Data Systems scores of bpMRI and clinical parameters, were developed to detect csPCa (intermediate/high grade [Gleason score ≥ 3+4]) and compared by analyzing the areas under the curves and decision curves.

Results: A predictive model defined by the combination of bpMRI and clinical parameters (age, PSA density) showed high discriminatory power (area under the curve, 0.861) and resulted in a significant net benefit on decision curve analysis. Applying a probability threshold of 7.5%, 21.6% of men could avoid unnecessary prostate biopsy, while only 1.0% of significant prostate cancers were missed.

Conclusion: This predictive model provided a reliable and measurable means of risk stratification of csPCa, with high discriminatory power and great net benefit. It could be a useful tool for clinical decision-making prior to prostate biopsies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524004PMC
http://dx.doi.org/10.4143/crt.2020.1068DOI Listing

Publication Analysis

Top Keywords

predictive model
16
clinical parameters
12
prostate cancer
12
bpmri clinical
12
based bi-parametric
8
bi-parametric magnetic
8
magnetic resonance
8
resonance imaging
8
prostate
8
clinically prostate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!