Application of in situ bioremediation strategies in soils amended with sewage sludges.

Sci Total Environ

Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain. Electronic address:

Published: April 2021

Increasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades. On one hand, classical physical and/or chemical technologies can be found which are efficient, but have high costs and impacts upon ecosystems. On the other hand, biological methods (such as phytoremediation, bioremediation and vermiremediation) are relatively cost effective and eco-friendly, but also more time-consuming. These biological methods and their yields have been widely studied but little is known about the interaction between different soil cleaning methods. The combination of different biological strategies could lead to an improvement in remediation performance. Hence, in the present work, different micro-, vermi- and phyto-remediation combinations are applied in a sewage sludge polluted landfill in Gernika-Lumo (Basque Country) which was used as a disposal point for decades, in search of the treatment (single) or combination (dual or triple) of treatments with best remediation yields. Eight experimental groups were applied (n=3) placing earthworms (E), bacteria (B), plants (P), bacteria+earthworms (B+E), bacteria+plants (B+P), plants+earthworms (P+E) plants+bacteria+earthworms (P+B+E) and a non-treated (N.T.) group in the experimental plot (Landfill 17), for 12 months. In order to assess the efficiency of each treatment, a complete characterization (chemical and ecotoxicological) was carried out before and after remediation. Results showed high removal rates for dieldrin (between 50% and 78%) in all the experimental groups. In contrast, removal rates around 20-25% were achieved for heavy metals (Cd 15%-35%; Ni 24%-37%; Pb 15%-33%; Cr 7%-39%) and benzo(a)pyrene (19.5%-28%). The highest reductions were observed in dual (P+E, B+E) and triple (P+B+E) treatments. The best elimination yields were obtained after P+B+E treatment, as highlighted by the battery of ecotoxicological tests and bioassays performed with earthworms, plants and bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144099DOI Listing

Publication Analysis

Top Keywords

soil cleaning
8
biological methods
8
treatments best
8
experimental groups
8
removal rates
8
application situ
4
situ bioremediation
4
bioremediation strategies
4
strategies soils
4
soils amended
4

Similar Publications

Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown.

View Article and Find Full Text PDF

Improved Functionality, Quality, and Shelf Life of -Type Camel Sausage Fortified with Spirulina as a Natural Ingredient.

Foods

December 2024

Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.

The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.

View Article and Find Full Text PDF

Heavy metal pollution in soil is a significant challenge around the world, particularly cadmium (Cd) contamination. In situ phytoextraction and remediation technology, particularly focusing on Cd hyperaccumulator plants, has proven to be an effective method for cleaning Cd-contaminated agricultural lands. However, this strategy is often hindered by a long remediation cycle and low efficiency.

View Article and Find Full Text PDF

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!