The coal pyrolysis wastewater (CPW) contributed to aquatic environment contamination with amount of aromatic pollutants, and the research on joint toxicity of the mixture of aromatic compounds was vital for environmental protection. By using Tetrahymena thermophile as non-target organism, the joint toxicity of typical nonpolar narcotics and polar narcotics in CPW was investigated. The results demonstrated that the nonpolar narcotics exerted chronic and reversible toxicity by hydrophobicity-based membrane perturbation, while polar narcotics performed acute toxicity by irreversible damage of cells. As the most hydrophobic nonpolar narcotics, indole and naphthalene caused the highest joint toxicity in 24 h with the lowest EC (24.93 mg/L). For phenolic compounds, the combination of p-cresol and p-nitrophenol also showed the top toxicity (EC = 10.9 mg/L) with relation to high hydrophobicity, and the joint toxicity was obviously stronger and more acute than that of nonpolar narcotics. Furthermore, by studying the joint toxicity of nonpolar narcotics and polar narcotics, the hydrophobicity-based membrane perturbation was the first step of toxicity effects, and afterwards the acute toxicity induced by electrophilic polar substituents of phenols dominated joint toxicity afterwards. This toxicity investigation was critical for understanding universal and specific effects of CPW to aquatic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.111880 | DOI Listing |
J Mater Sci Mater Med
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.
View Article and Find Full Text PDFInorg Chem
January 2025
International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
Hg is highly toxic and can cause serious harm to the environment and humans. Thus, it is vital to develop efficient Hg sensors. In this work, a LMOF-based (LMOF = luminescent metal-organic framework) "turn-on" Hg sensor () is first developed by an aggregation-induced emission (AIE) functional ligand.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China.
Pralsetinib demonstrated impressive improvement of survival in non-small cell lung cancer (NSCLC) patients harbored de novo RET fusion. However, the efficacy in patients with acquired RET fusion after resistance to EGFR/ALK-TKIs has only been reported on a case-by-case basis, and the strategy for overcoming the acquired RET fusion has not been fully investigated. This multicenter, real-world analysis enrolled 32 patients with unresectable NSCLC harbored acquired RET fusion after resistance to EGFR/ALK-TKIs in 23 centers across China from July 1, 2018 to Nov 23, 2022.
View Article and Find Full Text PDFMar Environ Res
January 2025
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035, Wenzhou, China. Electronic address:
Zn is a common heavy metal pollutant in water bodies and accounts for the largest proportion of heavy metal pollutants in many rivers entering the sea. This study investigated the growth and physiological response characteristics of Sargassum fusiforme under different divalent Zn ion concentration gradients. We observed that low concentration Zn treatment (<2 mg L) exerted no significant effect on the growth rate, photosynthesis, and nitrogen metabolism-related indicators of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!