Polyaromatic hydrocarbons (PAH) are persistent pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. A biotechnological approach to remove PAH from soil was evaluated in this work using a laccase mediator system. Initially, laccase was produced by fungal co-cultivation, using kiwi peels as substrate. The produced laccase was applied to PAH contaminated soil to evaluate its efficiency on enzymatic bioremediation. Results showed that laccase mediator system was effective in the degradation of pyrene, fluorene, chrysene and a lower extension anthracene. Mediators improved the PAH degradation and natural mediators (ferulic acid and p-coumaric acid) were as effective as the synthetic mediator ABTS. However, the process was not effective in the benzo[a]pyrene degradation, one of the most recalcitrant and toxic PAH. This low degradation rate could be related to the low activity of the laccase mediator system in an environment lacking water. To overcome this issue, a PAH contaminated soil degradation system was developed in packed bed reactor (PBR) fed with laccase/mediator. Continuous flow of laccase/mediator improved the PAH degradation, achieving 74.8 %, 71.9 %, 72.2 %, 81.8 % and 100 % degradation for fluorene, anthracene, phenanthrene, chrysene and pyrene, respectively. This system was able to degrade 96 % benzo[a]pyrene, which was 90 % higher than the degradation in batch system. Results indicated that the produced laccase as well as the fed-batch degradation system developed in PBR could be successfully applied in the degradation of soil PAH pollutants, with the advantage of achieving higher degradation rates than in simple batch, as well as being a faster and simpler process than microorganism bioremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2020.126687 | DOI Listing |
ChemSusChem
January 2025
Bordeaux University, Laboratoire de Chimie des Polymères Organiques - INPB/ENSCBP, 16 Avenue Pey Berland, 33607, Pessac Cedex, FRANCE.
This short review explores the enzymatic treatment of lignin in alkaline homogeneous systems, focusing on alkaliphilic laccases. In acidic conditions, native laccases are known to promote lignin polymerization, while the addition of mediators enables depolymerization into valuable small molecules. Alkaliphilic laccases, which remain active in basic pH where the vast majority of industrial lignins are soluble, present an interesting alternative.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China. Electronic address:
Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CHNA, Cu2-ANA nanozymes with laccase-activity.
View Article and Find Full Text PDFChemSusChem
January 2025
University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20127, Milano, ITALY.
Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Chemistry, Late Pushpadevi Patil Arts and Science College, Risod, Dist. Washim, Maharashtra, 444506, India.
We report the first in situ reaction of the β-haloketones obtained from laccase catalysed oxidation of secondary alcohol 2-halo phenylethanol's in present study. To the best of our knowledge, this is the first ever fusion of laccase catalysed oxidation reaction with green organic synthetic reaction. The methodology employs molecular oxygen to oxidize secondary alcohol in biphasic medium by laccase from T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!