Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reproductive toxicity endpoints are a significant safety concern in the assessment of the adverse effects of chemicals in drug discovery. Computational models that can accurately predict a chemical's toxic potential are increasingly pursued to replace traditional animal experiments. Thus, ensemble learning models were built to predict the reproductive toxicity of compounds. Our ensemble models were developed using support vector machine, random forest, and extreme gradient boosting methods and 9 molecular fingerprints calculated for a dataset containing 1823 chemicals. The best prediction performance was achieved by the Ensemble-Top12 model, with an accuracy (ACC) of 86.33 %, a sensitivity (SEN) of 82.02 %, a specificity (SPE) of 90.19 %, and an area under the receiver operating characteristic curve (AUC) of 0.937 in 5-fold cross-validation and ACC, SEN, SPE, and AUC values of 84.38 %, 86.90 %, 90.67 %, and 0.920, respectively, in external validation. We also defined the applicability domain (AD) of the ensemble model by calculating the Tanimoto distance of the training set. Compared with models in existing literature, our ensemble model achieves relatively high ACC, SPE and AUC values. We also identified several fingerprint features related to chemical reproductive toxicity. Considering the performance of model, we recommend using the Ensemble-Top12 model to predict reproductive toxicity in early drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2021.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!