A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. | LitMetric

Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.

Toxicol Lett

Technology Innovation Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, Shenyang, 110036, China; Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Liaoning University, Shenyang, 110036, China; School of Pharmaceutical Science, Liaoning University, Shenyang, 110036, China. Electronic address:

Published: April 2021

Reproductive toxicity endpoints are a significant safety concern in the assessment of the adverse effects of chemicals in drug discovery. Computational models that can accurately predict a chemical's toxic potential are increasingly pursued to replace traditional animal experiments. Thus, ensemble learning models were built to predict the reproductive toxicity of compounds. Our ensemble models were developed using support vector machine, random forest, and extreme gradient boosting methods and 9 molecular fingerprints calculated for a dataset containing 1823 chemicals. The best prediction performance was achieved by the Ensemble-Top12 model, with an accuracy (ACC) of 86.33 %, a sensitivity (SEN) of 82.02 %, a specificity (SPE) of 90.19 %, and an area under the receiver operating characteristic curve (AUC) of 0.937 in 5-fold cross-validation and ACC, SEN, SPE, and AUC values of 84.38 %, 86.90 %, 90.67 %, and 0.920, respectively, in external validation. We also defined the applicability domain (AD) of the ensemble model by calculating the Tanimoto distance of the training set. Compared with models in existing literature, our ensemble model achieves relatively high ACC, SPE and AUC values. We also identified several fingerprint features related to chemical reproductive toxicity. Considering the performance of model, we recommend using the Ensemble-Top12 model to predict reproductive toxicity in early drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2021.01.002DOI Listing

Publication Analysis

Top Keywords

reproductive toxicity
20
ensemble learning
8
methods molecular
8
molecular fingerprints
8
predict reproductive
8
ensemble-top12 model
8
spe auc
8
auc values
8
ensemble model
8
toxicity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!