Background And Purpose: A subset of aggressive meningioma is associated with higher morbidity and requires a different therapeutic management. This subset consists of World Health Organization (WHO) grade II and III meningioma, characterized particularly with microscopic brain invasion. Numerous studies tried to screen aggressive meningioma on pre-operative MRI. The objective of the study was to determine if an advanced shape analysis of supratentorial meningioma outlines could reliably predict WHO II-III grade and histological brain invasion.
Materials And Methods: We performed a retrospective analysis for all consecutive patients who underwent surgery for supratentorial histologically-proven meningioma from 2010 to 2018. Pre-operative MRI T1WI contrast enhanced axial, coronal and sagittal slices were collected from 101 patients. Advanced shape analysis including fractal analysis and topological skeleton analysis was performed. Shape analysis parameters were correlated with histopathological WHO grading and brain invasion on surgical pieces.
Results: Shape analysis features such as a low circularity, a low solidity, a high fractal dimension and a high number of skeleton's branches were significantly correlated with both WHO II-III meningioma and histological brain invasion. Cross-validated regression models including these features were predictive of WHO II-III meningioma and brain invasion with respective AUC of 0.71 and 0.72.
Conclusions: MRI shape analysis provides informative imaging biomarkers to predict high WHO grade and histological brain invasion of supratentorial meningioma. Further prospective studies including the evaluation of a fully-automatized and totally reproducible process are required to confirm the results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurad.2020.12.007 | DOI Listing |
Dev Med Child Neurol
January 2025
Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
Aim: To describe research priority-setting activities for cerebral palsy (CP) that have been conducted worldwide involving people with lived experience, focusing on participant characteristics, methods employed, identified research priorities, and collaboration as research partners.
Method: The JBI scoping review approach was followed. Six electronic databases and grey literature were searched for all publications up to February 2024.
Plants (Basel)
January 2025
Department of Horticulture, National Chung Hsing University, Taichung City 40227, Taiwan.
Trees are complex and dynamic living structures, where structural stability is essential for survival and for public safety in urban environments. Tree forks, as structural junctions, are key to tree integrity but are prone to failure under stress. The specific mechanical contributions of their internal conical structures remain largely unexplored.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Ecology and Environment, Xinjiang University, Urumqi 830046, China.
The characteristics of heartwood and sapwood not only reflect tree growth and site quality but also provide insights into habitat changes. This study examines the natural Oliv. forest in the Arghan section of the lower Tarim River, comparing the heartwood and sapwood characteristics of at different distances from the river, as well as at varying trunk heights and diameters at breast height (DBH).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Forestry, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina.
Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. , an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study.
View Article and Find Full Text PDFNutrients
January 2025
Department of Biology, California State University, Northridge, CA 91330, USA.
Background: Maternal obesity may contribute to childhood obesity in a myriad of ways, including through alterations of the infant gut microbiome. For example, maternal obesity may contribute both directly by introducing a dysbiotic microbiome to the infant and indirectly through the altered composition of human milk that fuels the infant gut microbiome. In particular, indigestible human milk oligosaccharides (HMOs) are known to shape the composition of the infant gut microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!