Background: Though autologous fat transplantation is regularly and successfully performed in plastic surgery, little is known about the factors that contribute to the rise of preadipocytes and how the viability of adipocytes is regulated. As sufficient blood supply is a key parameter for the transplant's survival, we opted to analyse the development of preadipocytes within the fat transplant via stimulation of tissue perfusion with the angiogenesis enhancing hormone leptin.

Methods: In a murine (C57BL/6N) model inguinal fat was autologously transplanted into a dorsal skinfold chamber. In the intervention group the fat transplant was treated with local administration of leptin (3 μg/ml) at days 3, 7 and 10 after transplantation. Saline solution was administered respectively in the control group. On the postoperative days 3, 7, 10, and 15 intra vital microscopy was done to assess the functional vessel density, vessel diameter, adipocyte survival and preadipocyte development. The study was completed by histological tissue analysis on days 15 after transplantation.

Results: Leptin administration leads to an increase of angiogenesis, which starts from day 7 after implantation and elevates perfusion as well as functional vessel density FVD at days 10 and 15 after transplantation. Perfusion develops first from the border zones of the transplant. Histological evaluation showed that the percentage of perilipin positive adipocytes increased markedly in the study group of mice. Moreover, fat transplants of mice of the leptin group disclosed significantly higher Pref-1 positive cells than fat transplants of the control group. The findings reported in this study indicate that the leptin can enhance the survival and the quality of grafted fat tissue, which may be due to induction of angiogenesis.

Conclusion: Leptin administration to fat transplants induced an increase in angiogenesis in the transplanted tissue and may play a role in reducing the resorption rate of lipoaspirates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2021.104131DOI Listing

Publication Analysis

Top Keywords

fat transplants
12
fat
9
fat transplant
8
days transplantation
8
control group
8
functional vessel
8
vessel density
8
leptin administration
8
increase angiogenesis
8
leptin
6

Similar Publications

Physical Activity (PA) provides numerous biological and psychological benefits, especially for cancer patients. PA mitigates treatment side effects, influences hormones, inflammation, adiposity, and immune function, and reduces symptoms of anxiety, depression, and fatigue. This study evaluates the impact of PA on these positive outcomes.

View Article and Find Full Text PDF

Efficacy of Fetal Wharton's Jelly Mesenchymal Stem Cells-Derived Small Extracellular Vesicles in Metabolic Syndrome.

Biomolecules

January 2025

Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia.

Background/objective: Metabolic syndrome (MetS) is characterized by abdominal obesity, increased blood pressure (BP), fasting blood glucose (FBG) and triglyceride levels, and reduced high-density lipoprotein (HDL) levels. This study aims to investigate the efficacy of the Wharton's jelly mesenchymal stem cells (WJMSCs)-derived small extracellular vesicles' (sEVs) preparations in managing MetS.

Method: Twenty-four rats were fed with a high-fat and high-fructose diet to induce MetS for 16 weeks and randomized into three groups ( = 8/group): a MetS Control group treated with normal saline, MetS Low Dose (LD) group treated with a LD of sEVs preparations (3 × 10 particle/rat), and MetS High Dose (HD) group treated with a HD of sEVs preparations (9 × 10 particles/rat).

View Article and Find Full Text PDF

we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0-S4) in a combined retrospective-prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF.

View Article and Find Full Text PDF

Adipose tissue (AT), is a major endocrine organ that plays a key role in health and disease. However, adipose dysfunctions, especially altered energy metabolism, have been under-investigated as white adipocytes have relatively low mitochondrial density. Nevertheless, recent studies suggest that mitochondria could play a major role in AT disorders and that AT mitochondrial activity could depend on adiposity level and location.

View Article and Find Full Text PDF

Novel translational mouse models of Metabolic Dysfunction-associated steatotic liver disease comparable to human MASLD with severe obesity.

Mol Metab

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Ajmera Transplant Centre, Toronto General Hospital, United Health Network, University of Toronto, Toronto, Canada.

Objective: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease, especially in patients with severe obesity. However, current mouse models for MASLD do not reflect the polygenetic background nor the metabolic changes in this population. Therefore, we investigated two novel mouse models of MASLD with a polygenetic background for the metabolic syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!