Lipocalin-2 (LCN2) has been implicated in promoting apoptosis and neuroinflammation in neurological disorders; however, its role in neural transplantation remains unknown. In this study, we cultured and differentiated Lund human mesencephalic (LUHMES) cells into human dopaminergic-like neurons and found that LCN2 mRNA was progressively induced in mouse brain after the intrastriatal transplantation of human dopaminergic-like neurons. The induction of LCN2 protein was detected in a subset of astrocytes and neutrophils infiltrating the core of the engrafted sites, but not in neurons and microglia. LCN2-immunoreactive astrocytes within the engrafted sites expressed lower levels of A1 and A2 astrocytic markers. Recruitment of microglia, neutrophils, and monocytes after transplantation was attenuated in LCN2 deficiency mice. The expression of M2 microglial markers was significantly elevated and survival of engrafted neurons was markedly improved after transplantation in LCN2 deficiency mice. Brain type organic cation transporter (BOCT), the cell surface receptor for LCN2, was induced in dopaminergic-like neurons after differentiation, and treatment with recombinant LCN2 protein directly induced apoptosis in dopaminergic-like neurons in a dose-dependent manner. Our results, therefore, suggested that LCN2 is a neurotoxic factor for the engrafted neurons and a modulator of neuroinflammation. LCN2 inhibition may be useful in reducing rejection after neural transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202001018R | DOI Listing |
Biotechnol J
July 2024
Life and Health Sciences Research Institute (ICVS), Universidade do Minho, Braga, Portugal.
SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2024
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark. Electronic address:
Parkinson's Disease (PD) is characterised by the loss of dopaminergic neurons and the deposition of protein inclusions called Lewy Bodies (LBs). LBs are heterogeneous structures composed of protein and lipid molecules and their main constituent is the presynaptic protein α-synuclein. SH-SY5Y cells are neuroblastoma cells commonly used to model PD because they express dopaminergic markers and α-synuclein and they can be differentiated into neuronal cells using established protocols.
View Article and Find Full Text PDFJ Parkinsons Dis
November 2023
Research & Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China.
Background: Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that afflicts more than 10 million people worldwide. Available therapeutic interventions do not stop disease progression. The etiopathogenesis of PD includes unbalanced calcium dynamics and chronic dysfunction of the axis of the endoplasmic reticulum (ER) and mitochondria that all can gradually favor protein aggregation and dopaminergic degeneration.
View Article and Find Full Text PDFCell J
June 2023
Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Objective: Neural stem cells (NSCs) are suitable therapeutic candidates. Here, we compare the proliferation rate, differentiation potential, and expression levels of specific markers in two groups of cultured NSCs derived from rat subgranular (SGZ) and subventricular (SVZ) zones.
Materials And Methods: In this experimental study, NSCs isolated from SGZ and SVZ were cultured in α-minimal essential medium (α-MEM) supplemented with 1% penicillin/streptomycin, 10% fetal bovine serum (FBS), 20 ng/ml basic fibroblast growth factor (bFGF), 20 ng/ml epidermal growth factor (EGF), and B27 supplement.
ACS Chem Neurosci
June 2023
Neuroscience Research Team, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín 050010, Colombia.
Parkinson's disease (PD), a progressive neurodegenerative movement disorder, has reached pandemic status worldwide. This neurologic disorder is caused primarily by the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Unfortunately, there are no therapeutic agents that slow or delay the disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!