The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.17178DOI Listing

Publication Analysis

Top Keywords

spindle assembly
20
prd1
12
bipolar spindle
12
sister kinetochores
12
recombination initiation
8
involved spindle
8
assembly rice
8
rice meiosis
8
dsb formation
8
prd1 signals
8

Similar Publications

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

To direct regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in the 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct highly cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis, resulting in a mitotic arrest.

View Article and Find Full Text PDF

NME7 maintains primary cilium assembly, ciliary microtubule stability, and Hedgehog signaling.

Life Sci Alliance

April 2025

https://ror.org/0040axw97 Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China

NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly.

View Article and Find Full Text PDF

Diverse microtubule-binding repeats regulate TPX2 activities at distinct locations within the spindle.

J Cell Biol

March 2025

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.

TPX2 is an elongated molecule containing multiple α-helical repeats. It stabilizes microtubules (MTs), promotes MT nucleation, and is essential for spindle assembly. However, the molecular basis of how TPX2 performs these functions remains elusive.

View Article and Find Full Text PDF

Maternal ELL3 loss-of-function leads to oocyte aneuploidy and early miscarriage.

Nat Struct Mol Biol

January 2025

Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.

Up to an estimated 10% of women experience miscarriage in their lifetimes. Embryonic aneuploidy is a leading cause for miscarriage, infertility and congenital defects. Here we identify variants of ELL3, a gene encoding a transcription elongation factor, in couples who experienced consecutive early miscarriages due to embryonic aneuploidy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!