Principles of Protein Labeling Techniques.

Methods Mol Biol

, Freising, Germany.

Published: March 2021

Protein labeling methods prior to separation and analysis have become indispensable approaches for proteomic profiling. Basically, three different types of tags are employed: stable isotopes, mass tags, and fluorophores. While proteins labeled with stable isotopes and mass tags are measured and differentiated by mass spectrometry, fluorescent labels are detected with fluorescence imagers. The major purposes for protein labeling are monitoring of biological processes, reliable quantification of compounds and specific detection of protein modifications and isoforms in multiplexed samples, enhancement of detection sensitivity, and simplification of detection workflows. Proteins can be labeled during cell growth by incorporation of amino acids containing different isotopes, or in biological fluids, cells or tissue samples by attaching specific groups to the ε-amino group of lysine, the N-terminus, or the cysteine residues. The principles and the modifications of the different labeling approaches on the protein level are described; benefits and shortcomings of the methods are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1186-9_35DOI Listing

Publication Analysis

Top Keywords

protein labeling
12
stable isotopes
8
isotopes mass
8
mass tags
8
proteins labeled
8
principles protein
4
labeling
4
labeling techniques
4
protein
4
techniques protein
4

Similar Publications

Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information.

View Article and Find Full Text PDF

Porous Silicon on Paper: A Platform for Quantitative Rapid Diagnostic Tests.

ACS Appl Mater Interfaces

January 2025

Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.

Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.

View Article and Find Full Text PDF

Background: The pharmacokinetics of biologic agents can differ between children and adults with inflammatory bowel disease (IBD), often necessitating modified paediatric dosing strategies.

Aims: To define the exposure-response relationship of vedolizumab in the paediatric IBD VedoKids cohort including the effect of baseline clearance on deep biochemical remission (normal C-reactive protein [CRP]/erythrocyte sedimentation rate [ESR] and steroid-free remission) at 30 weeks, and to use population pharmacokinetic models to find the best matches between adult and paediatric pharmacokinetic profiles.

Methods: We sought a pharmacokinetic model on 312 serum vedolizumab concentrations from 129 children, assisted by a published adult model as a Bayesian prior.

View Article and Find Full Text PDF

Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.

View Article and Find Full Text PDF

FTO Alleviates Hepatic Ischemia-Reperfusion Injury by Regulating Apoptosis and Autophagy.

Gastroenterol Res Pract

January 2025

Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Despite N-methyladenosine (mA) being closely involved in various pathophysiological processes, its potential role in liver injury is largely unknown. We designed the current research to study the potential role of fat mass and obesity-associated protein (FTO), an mA demethylase, on hepatic ischemia-reperfusion injury (IRI). Wild-type mice injected with an adeno-associated virus carrying fat mass and obesity-associated protein (AAV-FTO) or adeno-associated virus carrying green fluorescent protein (GFP) (AAV-GFP) were subjected to a hepatic IRI model in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!