Genome-Wide Association Study (GWAS) to Identify Salt-Tolerance QTLs Carrying Novel Candidate Genes in Rice During Early Vegetative Stage.

Rice (N Y)

Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshi University, G.C. Velenjak, Tehran, Iran.

Published: January 2021

AI Article Synopsis

  • Rice is sensitive to salinity, especially at the early vegetative stage, affecting production and necessitating increased productivity on salt-affected lands.
  • Genome-wide association studies (GWAS) were conducted using over 33,000 SNP markers to identify rice genomic regions linked to early salinity tolerance, focusing on various growth traits under both saline and normal conditions.
  • A total of 151 trait-marker associations were found across 10 rice chromosomes, with a significant genomic region on chromosome 1 associated with salinity tolerance, revealing multiple candidate genes that could help improve rice resistance to salinity stress.

Article Abstract

Background: Rice is considered as a salt-sensitive plant, particularly at early vegetative stage, and its production is suffered from salinity due to expansion of salt affected land in areas under cultivation. Hence, significant increase of rice productivity on salinized lands is really necessary. Today genome-wide association study (GWAS) is a method of choice for fine mapping of QTLs involved in plant responses to abiotic stresses including salinity stress at early vegetative stage. In this study using > 33,000 SNP markers we identified rice genomic regions associated to early stage salinity tolerance. Eight salinity-related traits including shoot length (SL), root length (RL), root dry weight (RDW), root fresh weight (RFW), shoot fresh weight (SFW), shoot dry weight (SDW), relative water content (RWC) and TW, and 4 derived traits including SL-R, RL-R, RDW-R and RFW-R in a diverse panel of rice were evaluated under salinity (100 mM NaCl) and normal conditions in growth chamber. Genome-wide association study (GWAS) was applied based on MLM(+Q + K) model.

Results: Under stress conditions 151 trait-marker associations were identified that were scattered on 10 chromosomes of rice that arranged in 29 genomic regions. A genomic region on chromosome 1 (11.26 Mbp) was identified which co-located with a known QTL region SalTol1 for salinity tolerance at vegetative stage. A candidate gene (Os01g0304100) was identified in this region which encodes a cation chloride cotransporter. Furthermore, on this chromosome two other candidate genes, Os01g0624700 (24.95 Mbp) and Os01g0812000 (34.51 Mbp), were identified that encode a WRKY transcription factor (WRKY 12) and a transcriptional activator of gibberellin-dependent alpha-amylase expression (GAMyb), respectively. Also, a narrow interval on the same chromosome (40.79-42.98 Mbp) carries 12 candidate genes, some of them were not so far reported for salinity tolerance at seedling stage. Two of more interesting genes are Os01g0966000 and Os01g0963000, encoding a plasma membrane (PM) H-ATPase and a peroxidase BP1 protein. A candidate gene was identified on chromosome 2 (Os02g0730300 at 30.4 Mbp) encoding a high affinity K transporter (HAK). On chromosome 6 a DnaJ-encoding gene and pseudouridine synthase gene were identified. Two novel genes on chromosome 8 including the ABI/VP1 transcription factor and retinoblastoma-related protein (RBR), and 3 novel genes on chromosome 11 including a Lox, F-box and Na/H antiporter, were also identified.

Conclusion: Known or novel candidate genes in this research were identified that can be used for improvement of salinity tolerance in molecular breeding programmes of rice. Further study and identification of effective genes on salinity tolerance by the use of candidate gene-association analysis can help to precisely uncover the mechanisms of salinity tolerance at molecular level. A time dependent relationship between salt tolerance and expression level of candidate genes could be recognized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797017PMC
http://dx.doi.org/10.1186/s12284-020-00433-0DOI Listing

Publication Analysis

Top Keywords

salinity tolerance
24
candidate genes
20
vegetative stage
16
genome-wide association
12
association study
12
study gwas
12
early vegetative
12
genes
9
salinity
9
candidate
8

Similar Publications

The amino acid permease contributes to tomato growth and salt tolerance by mediating branched-chain amino acid transport.

Hortic Res

January 2025

National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.

Branched-chain amino acids (BCAAs) are essential amino acids in tomato () required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato () gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs.

View Article and Find Full Text PDF

Bioremediation of trichloroethene (TCE)-contaminated sites often leads to groundwater acidification, while nitrate-polluted sites tend to generate alkalization. TCE and nitrate often coexist at contaminated sites; however, the pH variation caused by nitrate self-alkalization and TCE self-acidification and how these processes affect nitrate reduction and reductive dichlorination, have not been studied. This study investigated the interaction between nitrate and TCE, two common groundwater co-contaminants, during bioreduction in serum bottles containing synthetic mineral salt media and microbial consortia.

View Article and Find Full Text PDF

Effect of halo-tolerance gene Hal5 on ethanol tolerance of .

BBA Adv

October 2024

Department of Biochemistry, Panjab University, Chandigarh 160014, India.

Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.

View Article and Find Full Text PDF

Distribution and Fasciola infection rates of Lymnaea snails and cattle in high-salinity areas of Mekong Delta, Vietnam.

J Vet Med Sci

January 2025

Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.

Fasciola-induced fascioliasis is a zoonotic disease with significant health and economic impacts on humans and livestock. Freshwater Lymnaea snails serve as intermediate hosts, contributing to the increasing prevalence of fascioliasis in cattle in coastal areas. The salinity tolerance of Lymnaea snails was investigated along with their distribution and Fasciola infection rates in both snails and grazing cattle in Ben Tre, Tra Vinh, and Soc Trang provinces in Mekong Delta, Vietnam, where seawater reversely enters into the paddy field during the dry season.

View Article and Find Full Text PDF

Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance.

Plant Physiol Biochem

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China. Electronic address:

The halophyte Eutrema salsugineum is naturally distributed in saline-alkali soil and has been proposed as a model plant for understanding plant salt tolerance. As one of the largest and most diverse TF families, basic leucine zipper motif (bZIP) TFs perform robust functions in plant growth and environmental response, however the generalized information of EsbZIP genes and its regulatory role in salt tolerance has not been systematically studied to date. Here, we identified and characterized the bZIP members in E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!