Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Loss of the fragile X protein FMRP is a leading cause of intellectual disability and autism, but the underlying mechanism remains poorly understood. We report that FMRP deficiency results in hyperactivated nonsense-mediated mRNA decay (NMD) in human SH-SY5Y neuroblastoma cells and fragile X syndrome (FXS) fibroblast-derived induced pluripotent stem cells (iPSCs). We examined the underlying mechanism and found that the key NMD factor UPF1 binds directly to FMRP, promoting FMRP binding to NMD targets. Our data indicate that FMRP acts as an NMD repressor. In the absence of FMRP, NMD targets are relieved from FMRP-mediated translational repression so that their half-lives are decreased and, for those NMD targets encoding NMD factors, increased translation produces abnormally high factor levels despite their hyperactivated NMD. Transcriptome-wide alterations caused by NMD hyperactivation have a role in the FXS phenotype. Consistent with this, small-molecule-mediated inhibition of hyperactivated NMD, which typifies iPSCs derived from patients with FXS, restores a number of neurodifferentiation markers, including those not deriving from NMD targets. Our mechanistic studies reveal that many molecular abnormalities in FMRP-deficient cells are attributable-either directly or indirectly-to misregulated NMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273690 | PMC |
http://dx.doi.org/10.1038/s41556-020-00618-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!