Global wave number-4 pattern in the southern subtropical sea surface temperature.

Sci Rep

Application Laboratory, VAiG, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan.

Published: January 2021

Exploratory analysis using empirical orthogonal function revealed the presence of a stationary zonal wavenumber-4 (W4) pattern in the sea surface temperature (SST) anomaly in the southern subtropics (20°S-55°S). The signal over the Southern subtropics is seasonally phase-locked to the austral summer and persists up to mid-autumn. Thermodynamic coupling of atmosphere and the upper ocean helps in generating the W4 pattern, which later terminates due to the breaking of that coupled feedback. It is found that the presence of anomalous SST due to W4 mode in the surrounding of Australia affects the rainfall over the continent by modulating the local atmospheric circulation. During positive phase of W4 event, the presence of cold SST anomaly over the south-eastern and -western side of Australia creates an anomalous divergence circulation. This favours the moisture transport towards south-eastern Australia, resulting in more rainfall in February. The scenario reverses in case of a negative W4 event. There is also a difference of one month between the occurrence of positive and negative W4 peaks. This asymmetry seems to be responsible for the weak SST signal to the South of Australia. Correlation analysis suggests that the W4 pattern in SST is independent of other natural variabilities such as Southern Annular Mode, and Indian Ocean Dipole as well as a rather weak relationship with El Niño/Southern Oscillation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794447PMC
http://dx.doi.org/10.1038/s41598-020-80492-xDOI Listing

Publication Analysis

Top Keywords

sea surface
8
surface temperature
8
sst anomaly
8
southern subtropics
8
australia rainfall
8
sst
5
global wave
4
wave number-4
4
pattern
4
number-4 pattern
4

Similar Publications

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet).

View Article and Find Full Text PDF

Crucial role of subsurface ocean variability in tropical cyclone genesis.

Nat Commun

January 2025

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.

The upper ocean provides thermal energy to tropical cyclones. However, the impacts of the subsurface ocean on tropical cyclogenesis have been largely overlooked. Here, we show that the subsurface variabilities associated with the variation in the 26 °C isothermal depth have pronounced impacts on tropical cyclogenesis over global oceans.

View Article and Find Full Text PDF

Ocean current modulation of the spatial distribution of microplastics in the surface sediments of the Beibu Gulf, China.

J Hazard Mater

January 2025

School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.

Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.

View Article and Find Full Text PDF

Abundance of non-toxic and low-level toxic Pseudo-nitzschia explains the low levels of neurotoxin domoic acid in Chinese coastal waters.

J Hazard Mater

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China. Electronic address:

Domoic acid (DA), a well-known marine neurotoxin, is produced by toxic Pseudo-nitzschia species. However, the knowledge of DA in Chinese coastal waters remains limited, and the primary biological sources in these waters are still unknown. In this study, 200 surface phytoplankton samples were collected during summer and spring, covering the entire Chinese coastline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!