Fusarium verticillioides is an important fungal pathogen of maize, causing stalk rot and severely affecting crop production. The aim of this study was to characterize the protective effects of formulations based on Jacaranda mimosifolia leaf extracts against F. verticillioides in maize. We compared different seed treatments comprising J. mimosifolia extracts, chemical fungicide (mefenoxam) and salicylic acid to modulate the defense system of maize host plants. Both aqueous and methanolic leaf extracts of J. mimosifolia (1.2% w/v) resulted in 96-97% inhibition of mycelial growth of F. verticillioides. While a full-dose (1.2%) extract of J. mimosifolia provided significant protective effects on maize plants compared to the inoculated control, a half-dose (0.6% w/v) application of J. mimosifolia in combination with half-strength mefenoxam was the most effective treatment in reducing stalk rot disease in pot and field experiments. The same seed treatment significantly upregulated the expression of genes in the leaves encoding chitinase, glucanase, lipid transfer protein, and pathogenesis-related proteins PR-1, PR-5 and PR-10, 72 h after inoculation. This treatment also induced the activities of peroxidase, polyphenol oxidase, protease, acid invertase, chitinase and phenylalanine ammonia lyase. We conclude that seed pre-treatment with J. mimosifolia extract with half-strength chemical mefenoxam is a promising approach for the management of stalk rot in maize.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794358PMC
http://dx.doi.org/10.1038/s41598-020-79306-xDOI Listing

Publication Analysis

Top Keywords

stalk rot
12
fusarium verticillioides
8
seed treatment
8
jacaranda mimosifolia
8
protective effects
8
leaf extracts
8
mimosifolia
7
maize
6
induction defense-related
4
defense-related enzymes
4

Similar Publications

First report of causing Diplodia leaf streak disease of maize in Yunnan Province, China.

Plant Dis

December 2024

Yunnan Agricultural University College of Plant Protection, , Yunnan Agricultural University, Fengyuan Road 95, Kunming, kunming, China, 650201.

Maize (Zea mays. L) is cultivated globally as a staple food crop, animal feed, and biofuel. However, persistent diseases in maize have led significant yield losses and a decline in grain quality (Yang et al.

View Article and Find Full Text PDF

Background: The cultivation of maize (Zea mays L.), one of the most important crops worldwide for food, feed, biofuels, and industrial applications, faces significant constraints due to Fusarium verticillioides, a fungus responsible for severe diseases including seedling blights, stalk rot, and ear rot. Its impact is worsened by the fact that chemical and agronomic measures used to control the infection are often inefficient.

View Article and Find Full Text PDF
Article Synopsis
  • Amorphophallus konjac, or konjac, is a valuable plant in Asia, known for both economic and medicinal properties, but it is facing a leaf blight outbreak in Yunnan, China as of July 2024.
  • The disease causes brown lesions on leaves that worsen over time, leading to significant drops in plant health and corm yield.
  • To identify the bacteria responsible, researchers isolated samples, characterized them using genetic sequencing, and found that their isolates closely resembled a strain of K. cowanii.
View Article and Find Full Text PDF
Article Synopsis
  • Purple stem mustards, cultivated in the Yangtze River Valley, are facing a serious threat from a soft rot disease, resulting in 20-30% plant loss and severe economic impact in Wuhan, China as of February 2023.
  • Infected plants show symptoms like water-soaked bases, foul odors, and pus-like discharges, eventually leading to death.
  • Researchers isolated 15 strains of bacteria from affected plants, identifying three representative strains through biochemical tests and genetic analysis, aiming to determine the specific cause of the soft rot outbreak.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the damage caused by maize ear rot pathogens, focusing on their effects on maize roots and stalks, suggesting that these areas are critical in host-pathogen interactions.
  • Researchers isolated 43 pathogen strains from infected maize ears, identifying two dominant pathogens responsible for most ear rot symptoms.
  • Findings indicate that symptoms caused by one of the pathogens were more severe in stalk and root rot than in ear rot, highlighting the importance of roots and stalks as the main battleground for coevolution between maize and these pathogens.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!