When myo-[3H]inositol-prelabelled primary-cultured murine bone-marrow-derived macrophages were challenged with platelet-activating factor (PAF; 200 ng/ml), there was a rapid (2.5-fold at 10 s) rise in the intracellular concentration of D-myo-[3H]inositol 1,4,5-trisphosphate, followed by a rise in myo-[3H]inositol tetrakisphosphate. myo-[3H]Inositol tetrakisphosphate fractions were isolated by high-performance anion-exchange chromatography from myo-[3H]inositol-prelabelled chick erythrocytes and primary-cultured macrophages. In both cases [3H]iditol and [3H]inositol were the only significant products (greater than 90% of recovered radioactivity) after oxidation to completion with periodic acid, reduction with NaBH4 and dephosphorylation with alkaline phosphatase. The presence of [3H]inositol after this procedure is consistent with the occurrence of [3H]inositol 1,3,4,5-tetrakisphosphate in the cell extracts, whereas [3H]iditol could only be derived from D- or L-inositol 1,4,5,6-tetrakisphosphate. When [3H]inositol tetrakisphosphate fractions obtained from (A) unstimulated macrophages, (B) macrophages that had been stimulated with PAF for 40s or (C) chick erythrocytes were subjected to the above procedure, radioactivity was recovered in these polyols in the following proportions: A, 60-90% in iditol, with 10-40% in inositol; B, total radioactivity increased by a factor of 9.8, 94% being recovered in inositol and 8% in iditol; C, 70-80% in iditol and 20-30% in inositol. [3H]Iditol derived from myo-[3H]inositol tetrakisphosphate fractions from macrophages and chick erythrocytes was oxidized to sorbose by L-iditol dehydrogenase (L-iditol:NAD+2-oxidoreductase, 1.1.1.14) at the same rate as authentic L-iditol. D-[14C]Iditol, derived from D-myo-inositol 1,4,5-trisphosphate, was not oxidized by L-iditol dehydrogenase. This result indicates that the [3H]iditol was derived from L-myo-inositol inositol 1,4,5,6-tetrakisphosphate. The data are consistent with rapid PAF-sensitive synthesis of D-myo-[3H]inositol 1,3,4,5-tetrakisphosphate in macrophages, and demonstrate that L-myo-inositol 1,4,5,6-tetrakisphosphate is synthesized in both mammalian and avian cells. The levels of L-myo-[3H]inositol 1,4,5,6-tetrakisphosphate in primary-cultured macrophages are not acutely sensitive to PAF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148694 | PMC |
http://dx.doi.org/10.1042/bj2490271 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
October 2024
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
Inositol polyphosphate-5-phosphatase (5PTase) is a key enzyme in the inositol signaling pathway. It hydrolyzes the 5-phosphate on the inositol ring of inositol phosphate (IP) or phosphatidylinositol phosphate (PIP). However, there is limited reports on the homologous genes in soybean.
View Article and Find Full Text PDFJ Immunol
October 2024
Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
Neutrophils can efficiently trigger cytotoxicity toward tumor cells and other target cells upon engagement of the IgA receptor CD89. However, the cell-intrinsic factors that influence the induction of cell death upon exposure to neutrophil effector mechanisms in vivo remain largely unknown. To uncover genetic regulators that influence target cell sensitivity to IgA-induced neutrophil-mediated killing, we used a human CD89 (hCD89) transgenic mouse model in which IgA-mediated killing of Her2-positive CD47-deficient murine target cells is mediated by neutrophils.
View Article and Find Full Text PDFHistone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs .
View Article and Find Full Text PDFBMC Genomics
April 2024
School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
Background: In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells.
View Article and Find Full Text PDFRes Pract Thromb Haemost
February 2024
Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!