Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony.

Nat Commun

Laboratoire de Physique et Etude des Matériaux (CNRS/UPMC), Ecole Supérieure de Physique et de Chimie Industrielles, 10 Rue Vauquelin, Paris, 75005, France.

Published: January 2021

Detecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic field of investigation in contemporary condensed matter physics. Most attention has been focused on the regime near the degeneracy temperature when the thermal velocity can present a spatially modulated profile. Here, we report on the observation of a hydrodynamic feature in the flow of quasi-ballistic degenerate electrons in bulk antimony. By scrutinizing the temperature dependence of thermal and electric resistivities, we detect a size-dependent departure from the Wiedemann-Franz law, unexpected in the momentum-relaxing picture of transport. This observation finds a natural explanation in the hydrodynamic picture, where upon warming, momentum-conserving collisions reduce quadratically in temperature both viscosity and thermal diffusivity. This effect has been established theoretically and experimentally in normal-state liquid He. The comparison of electrons in antimony and fermions in He paves the way to a quantification of momentum-conserving fermion-fermion collision rate in different Fermi liquids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794374PMC
http://dx.doi.org/10.1038/s41467-020-20420-9DOI Listing

Publication Analysis

Top Keywords

thermal
4
thermal resistivity
4
resistivity hydrodynamics
4
hydrodynamics degenerate
4
degenerate electron
4
electron fluid
4
fluid antimony
4
antimony detecting
4
detecting hydrodynamic
4
hydrodynamic fingerprints
4

Similar Publications

Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.

View Article and Find Full Text PDF

Background: Endodontic treatment aims in the preservation of extremely carious primary teeth. For root canal therapy to be successful, root canals must be properly prepared and effectively irrigated .Therefore, it is necessary to select the proper root canal disinfection method to preserve the primary tooth.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!