Electrocardiogram (ECG) signals are used to diagnose cardiovascular diseases. During ECG signal acquisition, various noises like power line interference, baseline wandering, motion artifacts, and electromyogram noise corrupt the ECG signal. As an ECG signal is non-stationary, removing these noises from the recorded ECG signal is quite tricky. In this paper, along with the proposed denoising technique using stationary wavelet transform, various denoising techniques like lowpass filtering, highpass filtering, empirical mode decomposition, Fourier decomposition method, discrete wavelet transform are studied to denoise an ECG signal corrupted with noise. Signal-to-noise ratio, percentage root-mean-square difference, and root mean square error are used to compare the ECG signal denoising performance. The experimental result showed that the proposed stationary wavelet transform based ECG denoising technique outperformed the other ECG denoising techniques as more ECG signal components are preserved than other denoising algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2020.12.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!