For years, urban air quality networks have been set up by private organizations and governments to monitor toxic gases like NO. However, these networks can be very expensive to maintain, so their distribution is usually widely spaced, leaving gaps in the spatial resolution of the resulting air quality data. Recently, electrochemical sensors and their integration with unmanned aerial vehicles (UAVs) have attempted to fill these gaps through various experiments, none of which have considered the influence of a UAV when calibrating the sensors. Accordingly, this research attempts to improve the reliability of NO measurements detected from electrochemical sensors while on board an UAV by introducing rotor speed as part of the calibration model. This is done using a DJI Matrice 100 quadcopter and Alphasense sensors, which are calibrated using regression calculations in different environments. This produces a predictive r-squared up to 0.97. The sensors are then calibrated with rotor speed as an additional variable while on board the UAV and flown in a series of flights to evaluate the performance of the model, which produces a predictive r-squared up to 0.80. This methodological approach can be used to obtain more reliable NO measurements in future outdoor experiments that include electrochemical sensor integration with UAV's.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767167 | PMC |
http://dx.doi.org/10.3390/s20247332 | DOI Listing |
Mikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.
View Article and Find Full Text PDFTalanta
January 2025
Department of Electronics and Communication Engineering, Tezpur University, Tezpur, 784028, India. Electronic address:
Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Tongzhou Maternal & Child Health Hospital of Beijing, No. 124, Yuqiao Middle Road, Tongzhou District, Beijing 101101 PR China. Electronic address:
Cystatin C (Cys-C) is emerging as a critical biomarker for assess gestational diabetes mellitus (GDM), a condition that significantly impacts maternal and fetal health. In this study, we developed a novel label-free electrochemical immunosensor designed for point-of-care applications, offering lower reagent consumption and rapid detection of Cys-C in pregnant women with GDM. Compared to traditional enzyme-linked immunosorbent assays (ELISA), the sensor demonstrates enhanced sensitivity, reduced reagent usage, and faster detection.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China. Electronic address:
Bioreceptors are increasingly popular for selective aroma sensing but face challenges with receptor separation and cell culture. Here, we developed a bioreceptor-free electronic nose employing Mn-metal organic framework (Mn-MOF) nanonets as sensing materials for rapid electrochemical quantification of (E)-2-hexenal, a characteristic aroma commonly found in various foods. A simple solvent-mediated morphology engineering technology was proposed to create Mn-MOF structures, including nanoparticles, nanowires, and nanonets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!