The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (, , , , , , , and ) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in , , and after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825604PMC
http://dx.doi.org/10.3390/ijms22020515DOI Listing

Publication Analysis

Top Keywords

voltage-dependent ion
12
functional groups
12
cell membrane
12
rgo/ats rgo/tud
12
rgo/tud flakes
12
reduced graphene
8
ion channel
8
channel genes
8
glioblastoma multiforme
8
graphene derivatives
8

Similar Publications

Voltage-dependent anion channel (VDAC) is the primary conduit for regulated passage of ions and metabolites into and out of a mitochondrion. Calculating the solvation free energy for VDAC is crucial for understanding its stability, function, and interactions within the cellular environment. In this article, numerical schemes for computing the total solvation free energy for VDAC-comprising electrostatic, ideal gas, and excess free energies plus the nonpolar energy-are developed based on a nonuniform size modified Poisson-Boltzmann ion channel (nuSMPBIC) finite element solver along with tetrahedral meshes for VDAC proteins.

View Article and Find Full Text PDF

LC-ESI-MS/MS is a preferred method for detecting and identifying metabolites, including those that are unpredictable from the genome, especially in basal metazoans like Cnidaria, which diverged earlier than bilaterians and whose metabolism is poorly understood. However, the unexpected appearance of a "ghost peak" for dopamine, which exhibited the same m/z value and MS/MS product ion spectrum during an analysis of Nematostella vectensis, a model cnidarian, complicated its accurate identification. Understanding the mechanism by which "ghost peaks" appear is crucial to accurately identify the monoamine repertoire in early animals so as to avoid misassignments.

View Article and Find Full Text PDF

Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.

View Article and Find Full Text PDF

Calcium ions play a key role in the physiological processes of the central nervous system. The intracellular calcium signal, in nerve cells, is part of the neurotransmission mechanism. They are responsible for stabilizing membrane potential and controlling the excitability of neurons.

View Article and Find Full Text PDF
Article Synopsis
  • The voltage-gated calcium channel (VGCC) is made up of an α1 subunit and three auxiliary subunits, with the β subunit being crucial for moving the α1 subunit to the cell membrane and is extensively studied in calcium signaling.
  • VGCCs play a critical role in calcium ion movement within neurons, influencing processes like dendritic spine plasticity, with dysfunction in this signaling linked to neurodevelopmental disorders such as schizophrenia.
  • Overexpressing the β4 subunit in a mouse model reduced the density of small dendritic spines, with notable sex differences in this effect, indicating that interactions with other VGCC subunits, like β1b in males, may help protect against this reduction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!