In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500-900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825531 | PMC |
http://dx.doi.org/10.3390/ma14020255 | DOI Listing |
Biomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFWaste Manag
January 2025
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz-Institute Freiberg for Resource-Technology, Freiberg, Germany.
Printed circuit boards represent an extraordinarily challenging fraction for the recycling of waste electric and electronic equipment. Due to the closely interlinked structure of the composing materials, the selective recycling of copper and closely associated precious metals from this composite material is compromised by losses during mechanical pre-processing. This problem could partially be overcome by a better understanding of the influence of particle size and shape on the recovery of finely comminuted and well-liberated metal particles during mechanical separation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
Background: Mild Behavioral Impairment (MBI) is a condition characterized by neuropsychiatric symptoms (NPS) in older adults without dementia, serving as a precursor to various forms of dementia. This study explores the association between NPS and functional connectivity (FC) within the default mode network (DMN), executive control network (ECN), and salience network (SN) across three high-risk cohorts: mild cognitive impairment (due to Alzheimer's) (MCI, n = 79), cerebrovascular disease (CVD, n = 144), and Parkinson's disease (PD, n = 132).
Method: A total of 367 participants were recruited from the Ontario Neurodegenerative Disease Research Initiative (ONDRI).
Biomacromolecules
January 2025
Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
Chitosan-based materials are known for their excellent biocompatibility and inherent hemostatic properties. However, their hemostatic efficiency is significantly affected by poor wettability and mechanical strength. Herein, we developed a novel hemostatic super elastic sponge from mussel-inspired chitosan modified with long alkyl and catechol functional groups (HMCC) via a simple freezing-drying procedure.
View Article and Find Full Text PDFEar Nose Throat J
January 2025
Department of Otolaryngology, Northern Jiangsu People's Hospital, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.
This study aimed to compare the efficacy of continuous perfusion of underwater bone grinding combined with a -shaped incision versus a microscopic posterior ear incision in the treatment of attic cholesteatoma. Clinical trials were prospective studies from the Northern Jiangsu People's Hospital. Adult patients with middle ear cholesteatoma requiring ear surgery agreed to participate between September 2019 and September 2023 (age > 18).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!