Composite coating of antibiotic gentamicin (Gent), natural polymer chitosan (CS), and hydroxyapatite (HAP) was successfully assessed by applying the electrophoretic deposition (EPD) technique. EPD was performed under optimized deposition conditions (5 V, 12 min) on pure titanium plates, to obtain HAP/CS and HAP/CS/Gent composite coatings in a single step from three-component aqueous suspension, with favorable antibacterial properties. Composite coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis, confirming the formation of composite HAP/CS and HAP/CS/Gent coatings on the titanium surface, which is due to intermolecular hydrogen bonds. Employing the XRD technique, HAP was detected by obtaining the characteristic diffraction maximums. Good antibacterial activity of the composite coating loaded with antibiotic (HAP/CS/Gent) was confirmed against and , pointing to the high potential for bioapplication. Introduction of gentamicin in HAP/CS/Gent coating caused very mild cytotoxicity in the tested cell lines MRC-5 and L929. MTT testing was used to evaluate cell viability, and HAP/CS was classified as noncytotoxic.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.8b00859DOI Listing

Publication Analysis

Top Keywords

composite coating
12
hap/cs hap/cs/gent
8
composite coatings
8
composite
6
gentamicin-loaded bioactive
4
bioactive hydroxyapatite/chitosan
4
hydroxyapatite/chitosan composite
4
coating
4
coating electrodeposited
4
electrodeposited titanium
4

Similar Publications

Flexible infrared image fiber bundles (FBs) are capable of delivering thermal images of areas that are difficult for ordinary thermal cameras to access while making the imaging systems compact and lightweight. Thus, FB-based thermal imaging systems show great potential in some important applications, such as infrared endoscopy, aircraft infrared warning, and satellite remote sensing. In most applications, FBs are required to have high overall transmittance (OT) and high spatial resolution (), but the fabrication of such high-performance FBs is still a challenge.

View Article and Find Full Text PDF

In the present in vitro study, we evaluated the adhesion of an injectable platelet-rich fibrin (i-PRF) to laser-textured zirconia surfaces and their resultant friction behavior against bone tissue. Three types of zirconia surfaces were compared regarding the i-PRF coating effects: 1) grit blasted with 250-μm spherical alumina particles and acid etched with 20% hydrofluoric acid (ZLA), 2) laser textured with a random (RD) surface pattern, or 3) laser textured with a designed pattern based on 16 lines and 8 passages (L16N8). The coefficient of friction (COF) of the specimens was assessed on a reciprocating sliding pin-on-plate tribometer at 1-N normal load, 1 Hz, and a 2-mm stroke length.

View Article and Find Full Text PDF

Washable Superhydrophobic Cotton Fabric with Photothermal Self-Healing Performance Based on Nanocrystal-MXene.

ACS Appl Mater Interfaces

January 2025

Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.

Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.

View Article and Find Full Text PDF

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

All-solid-state batteries (ASSBs) are pursued due to their potential for better safety and high energy density. However, the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials (AMs) at high loading. With small amount of solid electrolyte (SE) powder in the cathode, poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs, leading to high tortuosity and limitation of lithium and electron transport pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!