Cancer cells were locally damaged using targeted gold nanoparticles (GNP) conjugated with therapeutic dye thionine (TN). GNP was prepared by citrate reduction method, and the two complexes, namely GTN1 and GTN2, were synthesized by mixing GNP and TN at different ratios at room temperature and at 80 °C, respectively. It is expected that GTN1 is formed when stabilizer TN participates in the reduction of Au ions to Au nanocrystallites, while GTN2 is synthesized when the cationic dye TN adsorbs onto the GNP surfaces due to the electrostatic attraction. The compounds were characterized by strong plasmon resonance absorption, Fourier transform infrared spectroscopy, dynamic light scattering technique, ζ-potential measurement, transmission electron microscopy, and atomic force microscopy. Crystallinity of the NPs was ascertained by X-ray diffraction. Strong binding of GTN1 to DNA and the structural perturbation prompted us to study the cytotoxic activity of the compounds on hepatocellular carcinoma cell lines (HepG2) by MTT assay. The mode of cytotoxicity was found due to reactive oxygen species (ROS) generation inside the cells. Fluorescence microscopy analysis revealed nuclear fragmentation which was caused due to the ROS. The GTN1 induced fragmentation led to the apoptosis mediated cell death as found from the cell cycle study. Conclusions drawn from these studies emphasized GTN1 to be capable of inhibiting proliferation in cancer cells in an amount greater than that of other compounds. The importance of the work lies in the exploration of effectiveness of nanoparticles to prevent cancer cell proliferation, which is a progressive step toward novel biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.7b00390 | DOI Listing |
Food Chem
January 2025
State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.
View Article and Find Full Text PDFTissue Cell
January 2025
Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Egypt.
Toxic-induced cerebellar syndrome (TOICS) poses substantial neurological challenges, given its diverse causes and complex manifestations. Gold nanoparticles (AuNPs) have gained significant attention owing to enhanced biocompatibility for therapeutic interventions. We aimed to investigate the impacts of AuNPs on cerebellar cytomolecular, immunohistochemical and ultrastructural alterations in the context of phenytoin-experimentally induced TOICS.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.
Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!