Collagen is a key element of basal lamina in physiological systems that participates in cell and tissue culture. Its function is for cell maintenance and growth, angiogenesis, disease progression, and immunology. The goal of our present study was to integrate a micrometer resolution membrane that is synthesized out of rat-tail type I collagen in a microfluidic device with apical and basolateral chambers. The collagen membrane was generated by lyophilization. In order to evaluate the compatibility of the resulting membrane with organs-on-chips technology, it was sandwiched between layers of polydimethylsiloxane (PDMS) that had been prepared by replica molding, and the device was used to culture human colon caco 2 cells on the top of the membrane. Membrane microstructure, transport, and cell viability in the organs-on-chips were observed to confirm the suitability of our resulting membrane. Through transport studies, we compared diffusion of two different membranes: Transwell and our resulting collagen membrane. We found that mass transport of 40 kDa dextran was an order of magnitude higher through the collagen membrane than that through the Transwell membrane. Human colon caco 2 cells were cultured in devices with no, Transwell, or ECM membrane to evaluate the compatibility of cells on the ECM membrane compared to the other two membranes. We found that caco 2 cells cultured on the collagen membrane had excellent viability and function for extended periods of time compared to the other two devices. Our results indicate a substantial improvement in establishing a physiological microenvironment for in vitro organs-on-chips.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.7b00883 | DOI Listing |
Bone
January 2025
Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America.
This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.
View Article and Find Full Text PDFBlood Adv
January 2025
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.
View Article and Find Full Text PDFJID Innov
March 2025
Cell Biology & Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom.
Junctional epidermolysis bullosa caused by loss-of-function variants in genes encoding the skin basement membrane proteins laminin 332, type XVII collagen, or integrin α6β4 affects patients from birth with severe blistering, eventually leading to scarring and early lethality. In this study, we have optimized a previously published junctional epidermolysis bullosa-knockout mouse model with weekly tamoxifen intraperitoneal injections, resulting in a more controllable and severe model. Owing to the titratable dosing, this model now recapitulates both early and advanced stages of the human disease, strengthening its use in therapeutic studies.
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!