While cleaning wastewater, biological wastewater treatment processes such as membrane bioreactors (MBR) produce a significant amount of sludge that requires costly management. In the oxic-settling-anoxic (OSA) process, sludge is retained for a temporary period in side-stream reactors with low oxygen and substrate, and then it is recirculated to the main reactor. In this way, excess sludge production is reduced. We studied the influence of the rate of sludge exchange between MBR and side-stream anoxic reactors on sludge yield reduction within MBR. Two MBRs, namely, MBR and MBR, each coupled with separate external anoxic side-stream reactors, were run in parallel for 350 days. Unlike MBR, MBR had sludge exchange with the external reactors connected to it. During the investigation over a sludge interchange rate (SIR) range of 0-22%, an SIR of 11% achieved the highest sludge reduction (58%). Greater volatile solids destruction i.e., bacterial cell lysis and extracellular polymeric substance (EPS) destruction occurred at the SIR of 11%, which helped to achieve the highest sludge reduction. The enhanced volatile solids destruction was evident by the release of nutrients in the external anoxic reactors. It was confirmed that the sludge yield reduction was achieved without compromising the wastewater treatment quality, sludge settleability and hydraulic performance of the membrane in MBR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111919 | DOI Listing |
Data Brief
December 2024
Centre of Marine Sciences (CCMAR), Campus de Gambelas, University of Algarve, Faro 8005-139, Portugal.
The dataset gathers available regulations of human activities and protection levels of Marine Protected Areas (MPAs) of the European Union (EU). The MPA list and polygons were extracted from the MPA database of the European Environment Agency (EEA) and completed with available zoning systems (all were filtered for their marine area reported under the Marine Strategy Framework Directive). Fully-overlapping MPAs were merged.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
Division of Engineering and Agriculture, Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
Bacteria and fungi that are resistant to formaldehyde (FA) are expected to use biochemical processing to degrade FA in wastewater. Pseudomonas sp. No.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Resource Recirculation Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea. Electronic address:
Globally, various policies are being implemented to phase out plastic, and South Korea has set targets to reduce waste and increase recycling rates by 2030. Concerns about managing microplastic pollution are growing. Most advanced research has primarily focused on aquatic ecosystems.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada. Electronic address:
The convergence of sustainability and climate change has catalyzed the pursuit of inventive strategies for waste management and sustainable energy production. Hereby, we explored the effect of coupling biochar addition and thermal pretreatment in anaerobic mono-digestion and co-digestion of thermally pretreated thickened waste activated sludge (PTWAS) with food waste (FW). Six semi-continuous lab-scale digesters were operated for 161 days at various organic loading rates (OLR of 2, 3, 4 and 8 kgCOD/m/day) with and without biochar (BC) addition.
View Article and Find Full Text PDFTalanta
December 2024
Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!