Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ionic liquid solvents (ILSs) have been effectively utilized in biomass pretreatment to produce cellulose-rich materials (CRMs). Predicting CRM properties and evaluating multi-dimensional relationships in this system are necessary but complicated. In this work, machine learning algorithms were applied to predict CRM properties in terms of cellulose enrichment factor (CEF) and solid recovery (SR), using 23-feature datasets from biomass characteristics, operating conditions, ILSs identities, and catalyst. Random forest algorithm was found to have the highest prediction accuracy with RMSE and R of 0.22 and 0.94 for CEF, as well as 0.07 and 0.84 for SR, respectively. Highly influential features on making predictions were mainly from biomass characteristics andILS treatment'soperating conditions, totally contributed 80% on CEF and 60% on SR. One- and two-way partial dependence plots were used to explain/interpret the multi-dimensional relationships of the most important features. Our findings could be applied in designing new ILSs and optimizing the process conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.124642 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!