We examined the effects of buoyancy on the distribution of arterial gas bubbles using in vitro and in vivo techniques in dogs. A simulated carotid artery preparation was used to determine the effects of bubble size and vessel angle on the velocity and direction of bubble movement in flowing blood. Because buoyancy tends to float bubbles away from dependent areas, bubble velocity would be expected to decrease as the vessel angle increased. We found that larger bubbles increased in velocity in the same direction as the blood flow at 0-, 10-, and 30-degree vessel angles and decreased when the vessel was positioned at 90 degrees. Smaller bubbles did not change velocity from 0 to 30 degrees and increased in velocity in the same direction as blood flow at 90 degrees. In 10 anesthetized dogs, we studied the effects of 0-, 10-, 15-, and 30-degree Trendelenburg's position on carotid artery distribution of gas bubbles injected into the left ventricle or ascending aorta. Regardless of the degree of the Trendelenburg position, the bubbles passed into the carotid artery simultaneously with passage into the abdominal aorta. We conclude that the forces of buoyancy do not overcome the force of arterial blood flow and that the Trendelenburg position does not prevent arterial bubbles from reaching the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-4975(10)62437-xDOI Listing

Publication Analysis

Top Keywords

trendelenburg position
12
carotid artery
12
velocity direction
12
blood flow
12
distribution arterial
8
gas bubbles
8
vessel angle
8
increased velocity
8
direction blood
8
bubbles
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!