Tryptophan and indole metabolism in immune regulation.

Curr Opin Immunol

Max-Planck-Institute for Biochemistry, Martinsried, Germany. Electronic address:

Published: June 2021

L-tryptophan is an essential amino acid that undergoes complex metabolic routes, resulting in production of many types of signaling molecules that fall into two types: retaining the indole ring such as serotonin, melatonin and indole-pyruvate or breaking the indole ring to form kynurenine. Kynurenines are the precursor of signaling molecules and are the first step in de novo NAD synthesis. In mammalian cells, the kynurenine pathway is initiated by the rate-limiting enzymes tryptophan-2,3-dioxygenase (TDO) and interferon responsive indoleamine 2,3-dioxygenase (IDO1) and is the major route for tryptophan catabolism. IDO1 regulates immune cell function through the kynurenine pathway but also by depleting tryptophan in microenvironments, and especially in tumors, which led to the development of IDO1 inhibitors for cancer therapy. However, the connections between tryptophan depletion versus product supply remain an ongoing challenge in cellular biochemistry and metabolism. Here, we highlight current knowledge about the physiological and pathological roles of tryptophan signaling network with a focus on the immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coi.2020.12.001DOI Listing

Publication Analysis

Top Keywords

signaling molecules
8
indole ring
8
kynurenine pathway
8
tryptophan
5
tryptophan indole
4
indole metabolism
4
metabolism immune
4
immune regulation
4
regulation l-tryptophan
4
l-tryptophan essential
4

Similar Publications

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

January 2025

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!