Mitigation of radiation-induced pulmonary fibrosis by small-molecule dye IR-780.

Free Radic Biol Med

School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China. Electronic address:

Published: February 2021

Radiation-induced pulmonary fibrosis (RIPF) is a common complication during thoracic radiotherapy, but there are few effective treatments. Here, we identify IR-780, a mitochondria-targeted near-infrared (NIR) dye, can selectively accumulate in the irradiated lung tissues. Besides, IR-780 significantly alleviates radiation-induced acute lung injury and fibrosis. Furthermore, our results show that IR-780 prevents the differentiation of fibroblasts and the release of pro-fibrotic factors from alveolar macrophages induced by radiation. Besides, IR-780 downregulates the expression of glycolysis-associated genes, and 2-Deoxy-d-glucose (2-DG) also prevents the development of fibrosis in vitro, suggesting radioprotective effects of IR-780 on RIPF might be related to glycolysis regulation. Finally, IR-780 induces tumour cell apoptosis and enhances radiosensitivity in representative H460 and A549 cell lines. These findings indicate that IR-780 is a potential therapeutic small-molecule dye during thoracic radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.435DOI Listing

Publication Analysis

Top Keywords

radiation-induced pulmonary
8
pulmonary fibrosis
8
small-molecule dye
8
ir-780
8
thoracic radiotherapy
8
mitigation radiation-induced
4
fibrosis
4
fibrosis small-molecule
4
dye ir-780
4
ir-780 radiation-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!