Serial propagation in water-in-oil emulsions selects for Saccharomyces cerevisiae strains with a reduced cell size or an increased biomass yield on glucose.

Metab Eng

Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands; NIZO Food Research, Kernhemseweg 2, 6718ZB, Ede, the Netherlands. Electronic address:

Published: March 2021

In S. cerevisiae and many other micro-organisms an increase in metabolic efficiency (i.e. ATP yield on carbon) is accompanied by a decrease in growth rate. From a fundamental point of view, studying these yield-rate trade-offs provides insight in for example microbial evolution and cellular regulation. From a biotechnological point of view, increasing the ATP yield on carbon might increase the yield of anabolic products. We here aimed to select S. cerevisiae mutants with an increased biomass yield. Serial propagation of individual cells in water-in-oil emulsions previously enabled the selection of lactococci with increased biomass yields, and adapting this protocol for yeast allowed us to enrich an engineered Crabtree-negative S. cerevisiae strain with a high biomass yield on glucose. When we started the selection with an S. cerevisiae deletion collection, serial propagation in emulsion enriched hxk2Δ and reg1Δ strains with an increased biomass yield on glucose. Surprisingly, a tps1Δ strain was highly abundant in both emulsion- and suspension-propagated populations. In a separate experiment we propagated a chemically mutagenized S. cerevisiae population in emulsion, which resulted in mutants with a higher cell number yield on glucose, but no significantly changed biomass yield. Genome analyses indicate that genes involved in glucose repression and cell cycle processes play a role in the selected phenotypes. The repeated identification of mutations in genes involved in glucose-repression indicates that serial propagation in emulsion is a valuable tool to study metabolic efficiency in S. cerevisiae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2020.12.005DOI Listing

Publication Analysis

Top Keywords

biomass yield
20
serial propagation
16
increased biomass
16
yield glucose
16
yield
9
water-in-oil emulsions
8
metabolic efficiency
8
atp yield
8
yield carbon
8
point view
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!